Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000813
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000813: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2,3] => [1,1,1]
=> [1,1]
=> 3
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,2,3,-4] => [1,1,1]
=> [1,1]
=> 3
[1,2,-3,4] => [1,1,1]
=> [1,1]
=> 3
[1,-2,3,4] => [1,1,1]
=> [1,1]
=> 3
[-1,2,3,4] => [1,1,1]
=> [1,1]
=> 3
[1,2,4,3] => [2,1,1]
=> [1,1]
=> 3
[1,2,-4,-3] => [2,1,1]
=> [1,1]
=> 3
[1,3,2,4] => [2,1,1]
=> [1,1]
=> 3
[1,-3,-2,4] => [2,1,1]
=> [1,1]
=> 3
[1,4,3,2] => [2,1,1]
=> [1,1]
=> 3
[1,-4,3,-2] => [2,1,1]
=> [1,1]
=> 3
[2,1,3,4] => [2,1,1]
=> [1,1]
=> 3
[-2,-1,3,4] => [2,1,1]
=> [1,1]
=> 3
[2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,-4,-3] => [2,2]
=> [2]
=> 1
[-2,-1,4,3] => [2,2]
=> [2]
=> 1
[-2,-1,-4,-3] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,1,1]
=> [1,1]
=> 3
[-3,2,-1,4] => [2,1,1]
=> [1,1]
=> 3
[3,4,1,2] => [2,2]
=> [2]
=> 1
[3,-4,1,-2] => [2,2]
=> [2]
=> 1
[-3,4,-1,2] => [2,2]
=> [2]
=> 1
[-3,-4,-1,-2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> 3
[-4,2,3,-1] => [2,1,1]
=> [1,1]
=> 3
[4,3,2,1] => [2,2]
=> [2]
=> 1
[4,-3,-2,1] => [2,2]
=> [2]
=> 1
[-4,3,2,-1] => [2,2]
=> [2]
=> 1
[-4,-3,-2,-1] => [2,2]
=> [2]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 47
[1,2,3,4,-5] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,2,3,-4,5] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,2,3,-4,-5] => [1,1,1]
=> [1,1]
=> 3
[1,2,-3,4,5] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,2,-3,4,-5] => [1,1,1]
=> [1,1]
=> 3
[1,2,-3,-4,5] => [1,1,1]
=> [1,1]
=> 3
[1,-2,3,4,5] => [1,1,1,1]
=> [1,1,1]
=> 10
[1,-2,3,4,-5] => [1,1,1]
=> [1,1]
=> 3
[1,-2,3,-4,5] => [1,1,1]
=> [1,1]
=> 3
[1,-2,-3,4,5] => [1,1,1]
=> [1,1]
=> 3
[-1,2,3,4,5] => [1,1,1,1]
=> [1,1,1]
=> 10
[-1,2,3,4,-5] => [1,1,1]
=> [1,1]
=> 3
[-1,2,3,-4,5] => [1,1,1]
=> [1,1]
=> 3
[-1,2,-3,4,5] => [1,1,1]
=> [1,1]
=> 3
[-1,-2,3,4,5] => [1,1,1]
=> [1,1]
=> 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 10
[1,2,3,5,-4] => [1,1,1]
=> [1,1]
=> 3
[1,2,3,-5,4] => [1,1,1]
=> [1,1]
=> 3
[1,2,3,-5,-4] => [2,1,1,1]
=> [1,1,1]
=> 10
Description
The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. This is also the sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to monomial symmetric functions.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00316: Binary words inverse Foata bijectionBinary words
St001491: Binary words ⟶ ℤResult quality: 15% values known / values provided: 18%distinct values known / distinct values provided: 15%
Values
[1,2,3] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,3,4] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[1,2,3,-4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-3,4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-2,3,4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,2,3,4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,4,3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,-4,-3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,3,2,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-3,-2,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,4,3,2] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-4,3,-2] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[2,1,3,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-2,-1,3,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[2,1,4,3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[2,1,-4,-3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-2,-1,4,3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-2,-1,-4,-3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[3,2,1,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-3,2,-1,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[3,4,1,2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[3,-4,1,-2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-3,4,-1,2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-3,-4,-1,-2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[4,2,3,1] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-4,2,3,-1] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[4,3,2,1] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[4,-3,-2,1] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-4,3,2,-1] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-4,-3,-2,-1] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[1,2,3,4,5] => [1,1,1,1,1]
=> 111110 => 111110 => ? = 47 - 1
[1,2,3,4,-5] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[1,2,3,-4,5] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[1,2,3,-4,-5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-3,4,5] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[1,2,-3,4,-5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-3,-4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-2,3,4,5] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[1,-2,3,4,-5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-2,3,-4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-2,-3,4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,2,3,4,5] => [1,1,1,1]
=> 11110 => 11110 => ? = 10 - 1
[-1,2,3,4,-5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,2,3,-4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,2,-3,4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,-2,3,4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,3,5,4] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,3,5,-4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,3,-5,4] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,3,-5,-4] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,-3,5,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,-3,-5,-4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,3,5,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,3,-5,-4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-1,2,3,5,4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-1,2,3,-5,-4] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,4,3,5] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,4,3,-5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,4,-3,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-4,3,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-4,-3,5] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,-4,-3,-5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,4,3,5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,-4,-3,5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-1,2,4,3,5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-1,2,-4,-3,5] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,4,5,3] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,4,-5,-3] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,-4,5,-3] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,-4,-5,3] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,5,3,4] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,5,-3,-4] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,-5,3,-4] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,-5,-3,4] => [3,1,1]
=> 100110 => 001110 => ? = 3 - 1
[1,2,5,4,3] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,5,4,-3] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,5,-4,3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,2,-5,4,3] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,2,-5,4,-3] => [2,1,1,1]
=> 101110 => 011110 => ? = 10 - 1
[1,2,-5,-4,-3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,5,4,3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,-2,-5,4,-3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[-1,2,5,4,3] => [2,1,1]
=> 10110 => 01110 => ? = 3 - 1
[1,3,-2,4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-3,2,4,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,3,2,5,4] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,3,2,-5,-4] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,-3,-2,5,4] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,-3,-2,-5,-4] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[1,4,3,-2,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-4,3,2,5] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,4,5,2,3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,4,-5,2,-3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,-4,5,-2,3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,-4,-5,-2,-3] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[1,5,3,4,-2] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[1,-5,3,4,2] => [1,1,1]
=> 1110 => 1110 => 2 = 3 - 1
[-1,5,4,3,2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,5,-4,-3,2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
[-1,-5,4,3,-2] => [2,2]
=> 1100 => 1010 => 0 = 1 - 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Mp00166: Signed permutations even cycle typeInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00082: Standard tableaux to Gelfand-Tsetlin patternGelfand-Tsetlin patterns
St001713: Gelfand-Tsetlin patterns ⟶ ℤResult quality: 6% values known / values provided: 6%distinct values known / distinct values provided: 8%
Values
[1,2,3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,4] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[1,2,3,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-3,4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-2,3,4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-1,2,3,4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,4,3] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,-4,-3] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,3,2,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-3,-2,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,4,3,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-4,3,-2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[2,1,3,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-2,-1,3,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[2,1,4,3] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[2,1,-4,-3] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-2,-1,4,3] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-2,-1,-4,-3] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[3,2,1,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-3,2,-1,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[3,4,1,2] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[3,-4,1,-2] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-3,4,-1,2] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-3,-4,-1,-2] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[4,2,3,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-4,2,3,-1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[4,3,2,1] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[4,-3,-2,1] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-4,3,2,-1] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[-4,-3,-2,-1] => [2,2]
=> [[1,2],[3,4]]
=> [[2,2,0,0],[2,1,0],[2,0],[1]]
=> ? = 1 - 3
[1,2,3,4,5] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,1,1,1,1],[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 47 - 3
[1,2,3,4,-5] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[1,2,3,-4,5] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[1,2,3,-4,-5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-3,4,5] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[1,2,-3,4,-5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-3,-4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-2,3,4,5] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[1,-2,3,4,-5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-2,3,-4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-2,-3,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-1,2,3,4,5] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,1,1,1],[1,1,1],[1,1],[1]]
=> ? = 10 - 3
[-1,2,3,4,-5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-1,2,3,-4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-1,2,-3,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-1,-2,3,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,5,4] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 10 - 3
[1,2,3,5,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,-5,4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,-5,-4] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 10 - 3
[1,2,-3,5,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,-3,-5,-4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-2,3,5,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-2,3,-5,-4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-1,2,3,5,4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-1,2,3,-5,-4] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,4,3,5] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 10 - 3
[1,2,4,3,-5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,4,-3,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-4,3,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-4,-3,5] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[2,1,1,1,0],[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 10 - 3
[1,2,-4,-3,-5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-2,4,3,5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,-2,-4,-3,5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-1,2,4,3,5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[-1,2,-4,-3,5] => [2,1,1]
=> [[1,2],[3],[4]]
=> [[2,1,1,0],[2,1,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,4,5,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,4,-5,-3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,-4,5,-3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[3,1,1,0,0],[3,1,0,0],[3,0,0],[2,0],[1]]
=> ? = 3 - 3
[1,2,5,4,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,-5,4,3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,3,-2,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-3,2,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,4,3,-2,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-4,3,2,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,5,3,4,-2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,-5,3,4,2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[2,-1,3,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-2,1,3,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[3,2,-1,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-3,2,1,4,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[4,2,3,-1,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-4,2,3,1,5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[5,2,3,4,-1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-5,2,3,4,1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,6,4,-5] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,3,5,6,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,5,4,6,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,6,3,5,-4] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,2,4,6,5,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,5,3,4,6,-2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,4,3,6,5,-2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,6,2,4,5,-3] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[1,3,6,4,5,-2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[5,2,3,4,6,-1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[4,2,3,6,5,-1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[3,2,6,4,5,-1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[6,1,3,4,5,-2] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[2,6,3,4,5,-1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
[-3,-2,1,4,5,6] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,1,1],[1,1],[1]]
=> 0 = 3 - 3
Description
The difference of the first and last value in the first row of the Gelfand-Tsetlin pattern.