searching the database
Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000824
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
St000824: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 2
[1,2,3] => 0
[1,3,2] => 2
[2,1,3] => 2
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 4
[1,2,3,4] => 0
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 4
[2,1,3,4] => 2
[2,1,4,3] => 4
[2,3,1,4] => 2
[2,3,4,1] => 2
[2,4,1,3] => 3
[2,4,3,1] => 4
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 4
[3,2,4,1] => 4
[3,4,1,2] => 2
[3,4,2,1] => 4
[4,1,2,3] => 2
[4,1,3,2] => 4
[4,2,1,3] => 4
[4,2,3,1] => 4
[4,3,1,2] => 4
[4,3,2,1] => 6
[1,2,3,4,5] => 0
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 4
[1,3,2,4,5] => 2
[1,3,2,5,4] => 4
[1,3,4,2,5] => 2
[1,3,4,5,2] => 2
[1,3,5,2,4] => 3
[1,3,5,4,2] => 4
[1,4,2,3,5] => 2
[1,4,2,5,3] => 3
[1,4,3,2,5] => 4
[1,4,3,5,2] => 4
[1,4,5,2,3] => 2
[1,4,5,3,2] => 4
Description
The sum of the number of descents and the number of recoils of a permutation.
This statistic is the sum of [[St000021]] and [[St000354]].
Matching statistic: St000422
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],1)
=> 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,2,3] => ([],3)
=> ([],1)
=> 0
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 2
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[1,2,3,4] => ([],4)
=> ([],1)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,3,2,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 4
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 4
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,2,3,4,5] => ([],5)
=> ([],1)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,4,3,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[1,3,2,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 4
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> 2
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 2
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 4
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[2,1,3,4,5] => ([(3,4)],5)
=> ([(1,2)],3)
=> 2
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 4
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 4
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 4
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> 4
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> 6
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 4
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 5
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 4
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 5
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ? = 3
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 4
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 5
[3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 5
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 6
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 4
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 5
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 5
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 6
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[4,1,3,2,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 4
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3
[4,1,5,3,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 5
[4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 4
[4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ? = 5
[4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 4
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.
Matching statistic: St000524
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000524: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000524: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> ? = 0 - 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> ? = 0 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> ? = 0 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> ? = 0 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 4 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 4 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 3 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 4 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
Description
The number of posets with the same order polynomial.
The order polynomial of a poset $P$ is the polynomial $S$ such that $S(m)$ is the number of order-preserving maps from $P$ to $\{1,\dots,m\}$.
See sections 3.12 and 3.15 of [1].
Matching statistic: St000525
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000525: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000525: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> ? = 0 - 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> ? = 0 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> ? = 0 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> ? = 0 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 4 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 4 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 3 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 4 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
Description
The number of posets with the same zeta polynomial.
The zeta polynomial $Z$ is the polynomial such that $Z(m)$ is the number of weakly increasing sequences $x_1\leq x_2\leq\dots\leq x_{m−1}$ of elements of the poset.
See section 3.12 of [1].
Since
$$
Z(q) = \sum_{k\geq 1} \binom{q-2}{k-1} c_k,
$$
where $c_k$ is the number of chains of length $k$, this statistic is the same as the number of posets with the same chain polynomial.
Matching statistic: St000526
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000526: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000526: Posets ⟶ ℤResult quality: 3% ●values known / values provided: 3%●distinct values known / distinct values provided: 22%
Values
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> ? = 0 - 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> ? = 0 - 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> ? = 0 - 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[1,2,3,4,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([],1)
=> ? = 0 - 1
[1,2,3,5,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,5] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,5,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,3,4] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,5,4,3] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[1,3,5,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,4,2,3,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,4,2,5,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 3 - 1
[1,4,3,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,1],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 - 1
[1,4,3,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,1],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,4,5,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 2 - 1
[1,4,5,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,1],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,2,3,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[1,5,2,4,3] => [[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,3],[3,4,5],[4,5],[5]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 4 - 1
[1,5,3,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,4],[3,4,4],[4,5],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[1,5,3,4,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,3,5],[3,4,5],[4,5],[5]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 4 - 1
[1,5,4,2,3] => [[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,4],[3,4,5],[4,5],[5]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 4 - 1
[1,5,4,3,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> [[1,1,1,1,1],[2,3,4,5],[3,4,5],[4,5],[5]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 6 - 1
[2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,3,5],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,4],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,1,5,4,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,2],[2,2,2,2],[3,4,5],[4,5],[5]]
=> ([(0,3),(0,6),(0,7),(1,8),(1,12),(2,8),(2,11),(3,9),(3,10),(4,2),(4,13),(5,1),(5,14),(6,4),(6,9),(7,5),(7,10),(8,15),(9,13),(10,14),(11,15),(12,15),(13,11),(14,12)],16)
=> ? = 6 - 1
[2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,2,3],[3,3,3],[4,5],[5]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 4 - 1
[2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,2,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 2 - 1
[2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,3,5],[4,5],[5]]
=> ([(0,9),(1,13),(2,14),(4,12),(5,11),(6,1),(6,12),(7,3),(8,5),(8,15),(9,10),(10,4),(10,6),(11,14),(12,8),(12,13),(13,15),(14,7),(15,2),(15,11)],16)
=> ? = 2 - 1
[2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,2,4],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[2,3,5,4,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,2,5],[3,4,5],[4,5],[5]]
=> ([(0,8),(0,16),(1,19),(1,20),(2,21),(3,23),(4,26),(5,24),(6,22),(7,27),(8,18),(9,10),(9,20),(10,4),(10,31),(11,2),(11,30),(12,3),(13,7),(13,29),(14,11),(14,28),(15,6),(15,25),(16,17),(16,18),(17,1),(17,9),(17,33),(18,33),(19,24),(20,13),(20,31),(21,32),(22,32),(24,14),(25,12),(26,28),(27,25),(28,30),(29,15),(29,27),(30,21),(30,22),(31,26),(31,29),(32,23),(33,5),(33,19)],34)
=> ? = 4 - 1
[2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,4],[4,4],[5]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 3 - 1
[2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,3],[2,2,3,3],[3,3,5],[4,5],[5]]
=> ([(0,6),(0,7),(1,5),(1,15),(2,4),(2,14),(3,13),(4,12),(5,3),(5,16),(6,9),(7,2),(7,9),(9,1),(9,14),(10,11),(11,8),(12,10),(13,8),(14,12),(14,15),(15,10),(15,16),(16,11),(16,13)],17)
=> ? = 4 - 1
[2,4,3,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [[1,1,1,1,4],[2,2,3,4],[3,3,4],[4,4],[5]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 4 - 1
[2,4,3,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> [[1,1,1,1,5],[2,2,3,5],[3,3,5],[4,5],[5]]
=> ([(0,8),(0,13),(1,19),(2,16),(2,18),(3,21),(4,26),(5,24),(6,16),(6,22),(7,20),(7,23),(8,17),(9,4),(9,18),(10,9),(11,7),(11,30),(12,3),(12,25),(13,14),(13,17),(14,1),(14,15),(15,2),(15,6),(15,19),(16,28),(17,10),(18,26),(18,28),(19,11),(19,22),(20,24),(20,31),(22,30),(23,31),(24,12),(24,27),(25,21),(26,23),(26,29),(27,25),(28,29),(29,31),(30,5),(30,20),(31,27)],32)
=> ? = 4 - 1
[2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,4],[2,2,4,4],[3,4,5],[4,5],[5]]
=> ([(0,9),(0,10),(1,2),(3,7),(3,23),(4,6),(4,22),(5,15),(6,16),(7,8),(7,24),(8,20),(9,19),(10,4),(10,19),(11,14),(11,18),(12,26),(13,26),(14,25),(15,1),(16,21),(17,13),(17,25),(18,12),(18,25),(19,3),(19,22),(20,12),(20,13),(21,14),(21,17),(22,16),(22,23),(23,11),(23,21),(23,24),(24,17),(24,18),(24,20),(25,5),(25,26),(26,15)],27)
=> ? = 3 - 1
[2,4,5,3,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0]]
=> [[1,1,1,1,5],[2,2,4,5],[3,4,5],[4,5],[5]]
=> ([(0,17),(0,18),(1,11),(1,12),(2,53),(3,50),(4,33),(5,16),(5,65),(6,13),(6,61),(7,14),(7,62),(8,15),(8,51),(9,25),(9,63),(10,24),(10,52),(11,54),(12,22),(12,23),(12,54),(13,36),(14,35),(15,40),(16,59),(17,1),(17,48),(18,7),(18,48),(19,32),(19,45),(20,29),(20,38),(21,55),(21,58),(22,49),(22,60),(23,42),(23,49),(24,31),(24,46),(25,21),(25,60),(25,64),(27,70),(28,70),(29,67),(30,66),(31,68),(32,3),(32,69),(33,8),(34,39),(35,57),(36,39),(37,32),(37,66),(38,19),(38,37),(38,67),(39,26),(40,26),(41,30),(41,67),(42,52),(43,44),(43,68),(44,28),(44,69),(45,27),(45,69),(46,53),(46,68),(47,61),(48,9),(48,62),(49,5),(49,56),(50,34),(51,40),(52,2),(52,46),(53,6),(53,47),(54,10),(54,42),(55,31),(55,43),(56,43),(56,65),(57,29),(57,41),(58,30),(58,37),(59,27),(59,28),(60,55),(60,56),(61,34),(61,36),(62,35),(62,63),(63,20),(63,57),(63,64),(64,38),(64,41),(64,58),(65,44),(65,45),(65,59),(66,33),(67,4),(67,66),(68,47),(69,50),(69,70),(70,51)],71)
=> ? = 4 - 1
[2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> [[1,1,1,1,3],[2,3,3,3],[3,4,4],[4,5],[5]]
=> ([(0,4),(0,8),(1,11),(3,10),(4,9),(5,2),(6,3),(6,12),(7,5),(8,6),(8,9),(9,12),(10,11),(11,7),(12,1),(12,10)],13)
=> ? = 3 - 1
[3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [[1,1,1,2,2],[2,2,2,3],[3,3,3],[4,4],[5]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,3,4,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,4,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3,5,6,4] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,1,0,0],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,6],[5,6],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,2,4,3,5,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,4,3,6,5] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,2,4,5,3,6] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,5],[4,4,5],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[1,3,2,4,5,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,3,2,4,6,5] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,2,5,4,6] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,3,4,2,5,6] => [[1,0,0,0,0,0],[0,0,0,1,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,1],[2,2,2,2,4],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
[2,1,3,4,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1,3,4,6,5] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,3,5,4,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,1,4,3,5,6] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[2,3,1,4,5,6] => [[0,0,1,0,0,0],[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]]
=> [[1,1,1,1,1,3],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 2 - 1
Description
The number of posets with combinatorially isomorphic order polytopes.
Matching statistic: St001603
Mp00060: Permutations —Robinson-Schensted tableau shape⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 22%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001603: Integer partitions ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 22%
Values
[1,2] => [2]
=> []
=> ?
=> ? = 0 - 7
[2,1] => [1,1]
=> [1]
=> []
=> ? = 2 - 7
[1,2,3] => [3]
=> []
=> ?
=> ? = 0 - 7
[1,3,2] => [2,1]
=> [1]
=> []
=> ? = 2 - 7
[2,1,3] => [2,1]
=> [1]
=> []
=> ? = 2 - 7
[2,3,1] => [2,1]
=> [1]
=> []
=> ? = 2 - 7
[3,1,2] => [2,1]
=> [1]
=> []
=> ? = 2 - 7
[3,2,1] => [1,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[1,2,3,4] => [4]
=> []
=> ?
=> ? = 0 - 7
[1,2,4,3] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[1,3,2,4] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[2,1,3,4] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? = 4 - 7
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[2,3,4,1] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[2,4,1,3] => [2,2]
=> [2]
=> []
=> ? = 3 - 7
[2,4,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[3,1,4,2] => [2,2]
=> [2]
=> []
=> ? = 3 - 7
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[3,2,4,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? = 2 - 7
[3,4,2,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[4,1,2,3] => [3,1]
=> [1]
=> []
=> ? = 2 - 7
[4,1,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[4,2,1,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[4,3,1,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> ? = 6 - 7
[1,2,3,4,5] => [5]
=> []
=> ?
=> ? = 0 - 7
[1,2,3,5,4] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,2,4,3,5] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,2,4,5,3] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,2,5,3,4] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,2,5,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[1,3,2,4,5] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,3,2,5,4] => [3,2]
=> [2]
=> []
=> ? = 4 - 7
[1,3,4,2,5] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,3,5,2,4] => [3,2]
=> [2]
=> []
=> ? = 3 - 7
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[1,4,2,3,5] => [4,1]
=> [1]
=> []
=> ? = 2 - 7
[1,4,2,5,3] => [3,2]
=> [2]
=> []
=> ? = 3 - 7
[1,4,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[1,4,5,2,3] => [3,2]
=> [2]
=> []
=> ? = 2 - 7
[1,4,5,3,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? = 4 - 7
[5,4,3,2,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[1,6,5,4,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[2,6,5,4,3,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[3,6,5,4,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[4,6,5,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[5,4,3,2,1,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[5,4,3,2,6,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[5,4,3,6,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[5,4,6,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[5,6,4,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,1,5,4,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,2,5,4,3,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,3,5,4,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,4,3,2,1,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,4,3,2,5,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,4,3,5,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,4,5,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,1,4,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,2,4,3,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,3,2,1,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,3,2,4,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,3,4,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,4,1,3,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,4,2,1,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,4,2,3,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,4,3,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[6,5,4,3,2,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3 = 10 - 7
[1,2,7,6,5,4,3] => [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
[1,3,7,6,5,4,2] => [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1 = 8 - 7
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.
Two colourings are considered equal, if they are obtained by an action of the dihedral group.
This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!