Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000845
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00064: Permutations reversePermutations
Mp00065: Permutations permutation posetPosets
St000845: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,1,3] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [3,5,2,4,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,5,4,1,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 2
Description
The maximal number of elements covered by an element in a poset.
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00121: Dyck paths Cori-Le Borgne involutionDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 3
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
Description
The maximal area to the right of an up step of a Dyck path.
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 95% values known / values provided: 95%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1 + 1
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 3 + 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 4 + 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 2 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St001039
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001039: Dyck paths ⟶ ℤResult quality: 92% values known / values provided: 92%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 3 + 1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 4 + 1
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 6 + 1
[1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 + 1
[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 2 + 1
[1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 4 + 1
[1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 2 + 1
Description
The maximal height of a column in the parallelogram polyomino associated with a Dyck path.
Matching statistic: St001203
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00030: Dyck paths zeta mapDyck paths
St001203: Dyck paths ⟶ ℤResult quality: 88% values known / values provided: 88%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0 + 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 3 + 1
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> ? = 1 + 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 4 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 3 + 1
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 4 + 1
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5 + 1
[1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 2 + 1
[1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 3 + 1
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0]
=> ? = 1 + 1
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,1,0,0]
=> ? = 2 + 1
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows: In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra. Example: [5,6,6,6,6] goes into [2,2,2,2,1]. Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra. The statistic return the global dimension of the CNakayama algebra divided by 2.
St001418: Dyck paths ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[1,0]
=> ? = 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> ? = 3
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ? = 4
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ? = 5
[1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> ? = 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 2
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Matching statistic: St000730
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00066: Permutations inversePermutations
Mp00240: Permutations weak exceedance partitionSet partitions
St000730: Set partitions ⟶ ℤResult quality: 87% values known / values provided: 87%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => {{1}}
=> ? = 0
[1,0,1,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 0
[1,1,0,0]
=> [2,1] => [2,1] => {{1,2}}
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => {{1,3},{2}}
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => {{1,2,3}}
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => {{1},{2,4},{3}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => {{1},{2,3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => {{1,4},{2},{3}}
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => {{1,3,4},{2}}
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => {{1,2,3},{4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => {{1,2,4},{3}}
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => {{1,3},{2,4}}
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => {{1,2,3,4}}
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => {{1},{2},{3,5},{4}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => {{1},{2,4},{3},{5}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,2,5,3] => {{1},{2,4,5},{3}}
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,3,5,2,4] => {{1},{2,3,5},{4}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,4,5,2,3] => {{1},{2,4},{3,5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => {{1,4},{2},{3},{5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => {{1,5},{2},{3},{4}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => {{1,4,5},{2},{3}}
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => {{1,3,4},{2},{5}}
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,1,5,2,3] => {{1,4},{2},{3,5}}
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => {{1,3,4,5},{2}}
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => [1,2,3,4,5,6,7,8] => {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,3,4,6,5,8,7] => [1,2,3,4,6,5,8,7] => ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,3,4,7,8,5,6] => [1,2,3,4,7,8,5,6] => {{1},{2},{3},{4},{5,7},{6,8}}
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,3,5,4,6,8,7] => [1,2,3,5,4,6,8,7] => ?
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6,8] => [1,2,3,5,4,7,6,8] => {{1},{2},{3},{4,5},{6,7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,3,6,7,4,5,8] => [1,2,3,6,7,4,5,8] => ?
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,3,5,6,8,7] => [1,2,4,3,5,6,8,7] => ?
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5,7,6,8] => [1,2,4,3,5,7,6,8] => ?
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,5,7,8] => [1,2,4,3,6,5,7,8] => {{1},{2},{3,4},{5,6},{7},{8}}
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,2,4,5,3,7,8,6] => [1,2,5,3,4,8,6,7] => ?
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,2,4,6,7,3,8,5] => [1,2,6,3,8,4,5,7] => ?
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,5,3,4,8,6,7] => [1,2,4,5,3,7,8,6] => ?
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,2,5,6,3,4,7,8] => [1,2,5,6,3,4,7,8] => {{1},{2},{3,5},{4,6},{7},{8}}
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,5,6,7,8,3,4] => [1,2,7,8,3,4,5,6] => ?
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,6,3,8,4,5,7] => [1,2,4,6,7,3,8,5] => ?
=> ? = 2
[1,0,1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,7,8,3,4,5,6] => [1,2,5,6,7,8,3,4] => {{1},{2},{3,5,7},{4,6,8}}
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,6,8,7] => [1,3,2,4,5,6,8,7] => ?
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,5,7,6,8] => [1,3,2,4,5,7,6,8] => {{1},{2,3},{4},{5},{6,7},{8}}
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,6,5,7,8] => [1,3,2,4,6,5,7,8] => ?
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,5,4,6,7,8] => [1,3,2,5,4,6,7,8] => {{1},{2,3},{4,5},{6},{7},{8}}
=> ? = 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,6,7,5,8] => [1,4,2,3,7,5,6,8] => {{1},{2,4},{3},{5,7},{6},{8}}
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [1,3,5,6,2,7,4,8] => [1,5,2,7,3,4,6,8] => {{1},{2,5},{3},{4,7},{6},{8}}
=> ? = 3
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,4,2,3,5,8,6,7] => [1,3,4,2,5,7,8,6] => ?
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,7,5,6,8] => [1,3,4,2,6,7,5,8] => {{1},{2,3,4},{5,6,7},{8}}
=> ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,4,5,2,3,6,7,8] => [1,4,5,2,3,6,7,8] => ?
=> ? = 2
[1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,4,5,6,7,2,3,8] => [1,6,7,2,3,4,5,8] => {{1},{2,6},{3,7},{4},{5},{8}}
=> ? = 4
[1,0,1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,5,2,7,3,4,6,8] => [1,3,5,6,2,7,4,8] => {{1},{2,3,5},{4,6,7},{8}}
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,6,7,2,3,4,5,8] => [1,4,5,6,7,2,3,8] => {{1},{2,4,6},{3,5,7},{8}}
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,6,8,7] => [2,1,3,4,5,6,8,7] => {{1,2},{3},{4},{5},{6},{7,8}}
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,5,7,6,8] => [2,1,3,4,5,7,6,8] => ?
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,4,6,5,7,8] => [2,1,3,4,6,5,7,8] => ?
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,5,4,6,7,8] => [2,1,3,5,4,6,7,8] => ?
=> ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7,8] => [2,1,4,3,5,6,7,8] => ?
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,8,7] => [2,1,4,3,6,5,8,7] => {{1,2},{3,4},{5,6},{7,8}}
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,1,4,3,7,8,5,6] => [2,1,4,3,7,8,5,6] => {{1,2},{3,4},{5,7},{6,8}}
=> ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [2,1,5,6,3,4,8,7] => [2,1,5,6,3,4,8,7] => {{1,2},{3,5},{4,6},{7,8}}
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,1,4,5,7,8,6] => [3,1,2,4,5,8,6,7] => {{1,3},{2},{4},{5},{6,8},{7}}
=> ? = 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,1,4,6,7,5,8] => [3,1,2,4,7,5,6,8] => ?
=> ? = 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4,7,8] => [3,1,2,6,4,5,7,8] => ?
=> ? = 2
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,3,4,1,6,7,8,5] => [4,1,2,3,8,5,6,7] => {{1,4},{2},{3},{5,8},{6},{7}}
=> ? = 3
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,3,5,6,1,7,8,4] => [5,1,2,8,3,4,6,7] => {{1,5},{2},{3},{4,8},{6},{7}}
=> ? = 4
[1,1,0,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,6,8,5,7] => [3,1,4,2,7,5,8,6] => {{1,3,4},{2},{5,7,8},{6}}
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [2,4,1,3,7,5,8,6] => [3,1,4,2,6,8,5,7] => {{1,3,4},{2},{5,6,8},{7}}
=> ? = 2
[1,1,0,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [2,4,5,1,6,3,7,8] => [4,1,6,2,3,5,7,8] => ?
=> ? = 3
[1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [2,4,5,6,7,1,8,3] => [6,1,8,2,3,4,5,7] => {{1,6},{2},{3,8},{4},{5},{7}}
=> ? = 5
[1,1,0,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [2,5,1,7,3,4,8,6] => [3,1,5,6,2,8,4,7] => {{1,3,5},{2},{4,6,8},{7}}
=> ? = 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [2,6,7,1,3,4,8,5] => [4,1,5,6,8,2,3,7] => {{1,4,6},{2},{3,5,8},{7}}
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [3,1,2,4,5,8,6,7] => [2,3,1,4,5,7,8,6] => {{1,2,3},{4},{5},{6,7,8}}
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,0,1,1,0,0,0]
=> [3,1,4,2,6,8,5,7] => [2,4,1,3,7,5,8,6] => {{1,2,4},{3},{5,7,8},{6}}
=> ? = 2
Description
The maximal arc length of a set partition. The arcs of a set partition are those $i < j$ that are consecutive elements in the blocks. If there are no arcs, the maximal arc length is $0$.
Matching statistic: St000846
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00069: Permutations complementPermutations
Mp00065: Permutations permutation posetPosets
St000846: Posets ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [2,1] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [1,2] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [3,2,1] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,3,1] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(0,1),(0,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [4,3,2,1] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,3,1,2] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [4,2,3,1] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [4,2,1,3] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [4,1,3,2] => ([(1,2),(1,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [3,4,2,1] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [3,4,1,2] => ([(0,3),(1,2)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,4,1] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,4,3,1] => ([(1,2),(1,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => ([(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => ([(2,3),(2,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => ([(1,2),(1,3),(1,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => ([(0,4),(1,2),(1,3)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => ([(0,4),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => ([(1,4),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,2,5,3,7,4,6] => [7,6,3,5,1,4,2] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,2,5,7,3,4,6] => [7,6,3,1,5,4,2] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,2,6,3,7,4,5] => [7,6,2,5,1,4,3] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,2,6,7,3,4,5] => [7,6,2,1,5,4,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,4,2,3,7,5,6] => [7,4,6,5,1,3,2] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,2,6,3,5,7] => [7,4,6,2,5,3,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,7,3,5,6] => [7,4,6,1,5,3,2] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,4,6,2,3,5,7] => [7,4,2,6,5,3,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,4,7,2,3,5,6] => [7,4,1,6,5,3,2] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,2,3,7,4,6] => [7,3,6,5,1,4,2] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,5,2,6,3,4,7] => [7,3,6,2,5,4,1] => ([(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,5,2,7,3,4,6] => [7,3,6,1,5,4,2] => ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,5,6,2,3,4,7] => [7,3,2,6,5,4,1] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,2,3,4,6] => [7,3,1,6,5,4,2] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,2,3,7,4,5] => [7,2,6,5,1,4,3] => ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,2,7,3,4,5] => [7,2,6,1,5,4,3] => ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,2,3,4,5] => [7,2,1,6,5,4,3] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,5,6] => [6,7,4,5,1,3,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [2,1,4,7,3,5,6] => [6,7,4,1,5,3,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,3,4,7,6] => [6,7,3,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [2,1,5,3,7,4,6] => [6,7,3,5,1,4,2] => ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [2,1,5,7,3,4,6] => [6,7,3,1,5,4,2] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [2,1,6,3,4,7,5] => [6,7,2,5,4,1,3] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [2,1,6,3,7,4,5] => [6,7,2,5,1,4,3] => ([(0,5),(0,6),(1,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [2,1,6,7,3,4,5] => [6,7,2,1,5,4,3] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3)],7)
=> ? = 2
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [2,4,1,3,7,5,6] => [6,4,7,5,1,3,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,1,7,3,5,6] => [6,4,7,1,5,3,2] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,4,7,1,3,5,6] => [6,4,1,7,5,3,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [2,5,1,3,4,7,6] => [6,3,7,5,4,1,2] => ([(0,6),(1,5),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,5,1,3,7,4,6] => [6,3,7,5,1,4,2] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,5,1,7,3,4,6] => [6,3,7,1,5,4,2] => ([(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,5,7,1,3,4,6] => [6,3,1,7,5,4,2] => ([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,1,3,4,7,5] => [6,2,7,5,4,1,3] => ([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,6,1,3,7,4,5] => [6,2,7,5,1,4,3] => ([(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,6,1,7,3,4,5] => [6,2,7,1,5,4,3] => ([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 2
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [2,6,7,1,3,4,5] => [6,2,1,7,5,4,3] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,2,4,7,5,6] => [5,7,6,4,1,3,2] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [3,1,2,5,4,7,6] => [5,7,6,3,4,1,2] => ([(0,6),(1,5),(2,3),(2,4)],7)
=> ? = 1
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [3,1,2,5,7,4,6] => [5,7,6,3,1,4,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,1,2,6,4,5,7] => [5,7,6,2,4,3,1] => ([(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 1
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [3,1,2,6,4,7,5] => [5,7,6,2,4,1,3] => ([(0,6),(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,1,2,7,4,5,6] => [5,7,6,1,4,3,2] => ([(0,5),(0,6),(1,2),(1,3),(1,4)],7)
=> ? = 1
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [3,1,4,2,7,5,6] => [5,7,4,6,1,3,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4)],7)
=> ? = 2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,1,4,7,2,5,6] => [5,7,4,1,6,3,2] => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 3
[1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,1,5,2,4,6,7] => [5,7,3,6,4,2,1] => ([(2,5),(2,6),(3,4),(3,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [3,1,5,2,4,7,6] => [5,7,3,6,4,1,2] => ([(0,5),(1,4),(1,6),(2,3),(2,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,7,4,6] => [5,7,3,6,1,4,2] => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5)],7)
=> ? = 2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,1,5,7,2,4,6] => [5,7,3,1,6,4,2] => ([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6)],7)
=> ? = 3
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => [5,7,2,6,4,3,1] => ([(1,5),(1,6),(2,3),(2,4),(2,6)],7)
=> ? = 2
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [3,1,6,2,4,7,5] => [5,7,2,6,4,1,3] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6)],7)
=> ? = 2
Description
The maximal number of elements covering an element of a poset.
Mp00028: Dyck paths reverseDyck paths
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00066: Permutations inversePermutations
St000451: Permutations ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [2,4,1,3] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,1,4,2] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [3,4,1,2] => 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [2,4,1,3,5] => 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [3,4,1,2,5] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [2,3,4,1,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,3,5,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,5,1,2,4] => 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [2,3,5,1,4] => 3 = 2 + 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 1 + 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,1,3,5,6,7] => [3,1,4,2,5,6,7] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => [3,1,2,5,4,6,7] => ? = 2 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,1,2,5,4,6,7] => [2,3,1,5,4,6,7] => ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,3,4,6,7] => ? = 2 + 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? = 3 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,1,2,5,3,6,7] => [2,3,5,1,4,6,7] => ? = 2 + 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,3,4,6,7] => [2,1,4,5,3,6,7] => ? = 1 + 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,1,4,6,7] => [4,1,2,5,3,6,7] => ? = 3 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,1,5,2,4,6,7] => [2,4,1,5,3,6,7] => ? = 2 + 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3,6,7] => [2,4,5,1,3,6,7] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [2,5,1,3,4,6,7] => [3,1,4,5,2,6,7] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [3,5,1,2,4,6,7] => [3,4,1,5,2,6,7] => ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [4,5,1,2,3,6,7] => [3,4,5,1,2,6,7] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 1 + 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [2,3,1,4,6,5,7] => [3,1,2,4,6,5,7] => ? = 2 + 1
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [3,1,2,4,6,5,7] => [2,3,1,4,6,5,7] => ? = 1 + 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5,7] => [4,1,2,3,6,5,7] => ? = 3 + 1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [3,4,1,2,6,5,7] => [3,4,1,2,6,5,7] => ? = 2 + 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [4,1,2,3,6,5,7] => [2,3,4,1,6,5,7] => ? = 1 + 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,4,5,7] => ? = 2 + 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [3,1,2,5,6,4,7] => [2,3,1,6,4,5,7] => ? = 2 + 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? = 4 + 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [4,1,2,5,6,3,7] => [2,3,6,1,4,5,7] => ? = 3 + 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,1,2,6,4,7] => [3,4,1,6,2,5,7] => ? = 2 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [4,5,1,2,6,3,7] => [3,4,6,1,2,5,7] => ? = 3 + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [5,1,2,3,6,4,7] => [2,3,4,6,1,5,7] => ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,4,5,7] => [2,1,3,5,6,4,7] => ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1,6,4,5,7] => [3,1,2,5,6,4,7] => ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,1,2,6,4,5,7] => [2,3,1,5,6,4,7] => ? = 1 + 1
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,2,5,7] => [1,5,2,3,6,4,7] => ? = 3 + 1
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,4,1,6,2,5,7] => [3,5,1,2,6,4,7] => ? = 3 + 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,1,2,6,3,5,7] => [2,3,5,1,6,4,7] => ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,5,6,3,4,7] => [2,1,5,6,3,4,7] => ? = 2 + 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,1,5,6,2,4,7] => [2,5,1,6,3,4,7] => ? = 3 + 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [4,1,5,6,2,3,7] => [2,5,6,1,3,4,7] => ? = 3 + 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,1,6,3,4,7] => [3,1,5,6,2,4,7] => ? = 2 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [5,1,2,6,3,4,7] => [2,3,5,6,1,4,7] => ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,3,4,5,7] => [2,1,4,5,6,3,7] => ? = 1 + 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,1,4,5,7] => [4,1,2,5,6,3,7] => ? = 3 + 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,1,6,2,4,5,7] => [2,4,1,5,6,3,7] => ? = 2 + 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,1,2,5,7] => [4,5,1,2,6,3,7] => ? = 3 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [4,1,6,2,3,5,7] => [2,4,5,1,6,3,7] => ? = 2 + 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,1,3,4,7] => [4,1,5,6,2,3,7] => ? = 3 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,6,2,3,4,7] => [2,4,5,6,1,3,7] => ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,1,3,4,5,7] => [3,1,4,5,6,2,7] => ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [3,6,1,2,4,5,7] => [3,4,1,5,6,2,7] => ? = 2 + 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,1,2,3,5,7] => [3,4,5,1,6,2,7] => ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,6,1,2,3,4,7] => [3,4,5,6,1,2,7] => ? = 2 + 1
Description
The length of the longest pattern of the form k 1 2...(k-1).
Matching statistic: St000527
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
Mp00242: Dyck paths Hessenberg posetPosets
St000527: Posets ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> ([],1)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> ([],2)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> ([(0,1),(0,2)],3)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([],3)
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> ([(1,2)],3)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> ([(0,3),(3,1),(3,2)],4)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3)],4)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([],4)
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> ([(1,2),(1,3)],4)
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(3,1)],4)
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> ([(1,3),(2,3)],4)
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(2,3)],4)
=> 3 = 2 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3)],4)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3 = 2 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4 = 3 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(1,4),(4,2),(4,3)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4 = 3 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([],5)
=> 5 = 4 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(1,2),(1,3),(1,4)],5)
=> 4 = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(2,3),(2,4)],5)
=> 4 = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 3 = 2 + 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> ([(0,6),(1,3),(1,4),(3,6),(4,6),(5,2),(6,5)],7)
=> ? = 2 + 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,3),(1,6),(3,5),(4,2),(5,4),(6,5)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,5),(1,6),(3,5),(3,6),(4,2),(5,4),(6,4)],7)
=> ? = 1 + 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(3,6),(4,6),(5,6),(6,2)],7)
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,4),(1,5),(2,6),(4,6),(5,6),(6,3)],7)
=> ? = 2 + 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,5),(1,3),(1,4),(3,6),(4,5),(5,6),(6,2)],7)
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,6),(1,5),(2,3),(2,5),(3,6),(5,6),(6,4)],7)
=> ? = 2 + 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,3),(0,6),(1,5),(1,6),(3,5),(4,2),(5,4),(6,4)],7)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(3,2),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,1),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ([(0,6),(1,2),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4),(6,5)],7)
=> ? = 1 + 1
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 3 + 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(6,1)],7)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ([(0,3),(1,4),(1,6),(2,5),(3,4),(3,6),(4,2),(6,5)],7)
=> ? = 1 + 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(4,3),(5,4),(6,3)],7)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,6),(3,6),(4,6),(5,2)],7)
=> ? = 2 + 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ([(0,5),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(5,6)],7)
=> ? = 3 + 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> ([(0,5),(0,6),(1,2),(1,3),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,6),(1,2),(1,3),(1,4),(2,6),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(2,4),(2,5),(3,1),(3,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ([(0,6),(1,4),(1,6),(2,3),(2,4),(3,6),(4,5),(6,5)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ? = 2 + 1
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,4),(2,5),(4,3),(5,3),(6,4)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,3),(0,4),(3,6),(4,6),(5,1),(5,2),(6,5)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,4),(4,6),(5,2),(5,3),(6,5)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(1,6),(2,6),(5,1),(5,2),(6,3),(6,4)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,1),(4,2)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,2),(1,5),(1,6),(2,5),(2,6),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ([(0,4),(1,5),(1,6),(2,5),(2,6),(3,2),(4,1),(4,3)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(1,6),(2,6),(3,4),(3,5),(6,4),(6,5)],7)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ([(0,2),(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,1)],7)
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,5),(1,6),(2,4),(3,1),(3,4),(4,5),(4,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ([(0,5),(0,6),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2 + 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,5),(1,6),(2,5),(5,3),(5,4),(6,3),(6,4)],7)
=> ? = 1 + 1
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ([(0,6),(1,2),(2,6),(6,3),(6,4),(6,5)],7)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1),(3,2)],7)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,1)],7)
=> ? = 2 + 1
[1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(3,4),(3,5),(3,6)],7)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6)],7)
=> ? = 4 + 1
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 3 + 1
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6)],7)
=> ? = 4 + 1
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ([(0,2),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5)],7)
=> ? = 3 + 1
Description
The width of the poset. This is the size of the poset's longest antichain, also called Dilworth number.
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000306The bounce count of a Dyck path. St000662The staircase size of the code of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000141The maximum drop size of a permutation. St000651The maximal size of a rise in a permutation. St001046The maximal number of arcs nesting a given arc of a perfect matching. St000720The size of the largest partition in the oscillating tableau corresponding to the perfect matching. St000062The length of the longest increasing subsequence of the permutation. St000166The depth minus 1 of an ordered tree. St000094The depth of an ordered tree. St000454The largest eigenvalue of a graph if it is integral. St001330The hat guessing number of a graph. St001589The nesting number of a perfect matching. St000455The second largest eigenvalue of a graph if it is integral. St001864The number of excedances of a signed permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001905The number of preferred parking spots in a parking function less than the index of the car. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path.