Your data matches 28 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000884: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 0
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 0
[3,2,4,1] => 2
[3,4,1,2] => 1
[3,4,2,1] => 0
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 0
[4,2,3,1] => 2
[4,3,1,2] => 0
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 0
[1,3,2,4,5] => 1
[1,3,2,5,4] => 2
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 0
[1,4,2,3,5] => 1
[1,4,2,5,3] => 2
[1,4,3,2,5] => 0
[1,4,3,5,2] => 2
[1,4,5,2,3] => 1
Description
The number of isolated descents of a permutation. A descent $i$ is isolated if neither $i+1$ nor $i-1$ are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Matching statistic: St001657
Mp00064: Permutations reversePermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => [1]
=> 0
[1,2] => [2,1] => [1,1] => [1,1]
=> 0
[2,1] => [1,2] => [2] => [2]
=> 1
[1,2,3] => [3,2,1] => [1,1,1] => [1,1,1]
=> 0
[1,3,2] => [2,3,1] => [2,1] => [2,1]
=> 1
[2,1,3] => [3,1,2] => [1,2] => [2,1]
=> 1
[2,3,1] => [1,3,2] => [2,1] => [2,1]
=> 1
[3,1,2] => [2,1,3] => [1,2] => [2,1]
=> 1
[3,2,1] => [1,2,3] => [3] => [3]
=> 0
[1,2,3,4] => [4,3,2,1] => [1,1,1,1] => [1,1,1,1]
=> 0
[1,2,4,3] => [3,4,2,1] => [2,1,1] => [2,1,1]
=> 1
[1,3,2,4] => [4,2,3,1] => [1,2,1] => [2,1,1]
=> 1
[1,3,4,2] => [2,4,3,1] => [2,1,1] => [2,1,1]
=> 1
[1,4,2,3] => [3,2,4,1] => [1,2,1] => [2,1,1]
=> 1
[1,4,3,2] => [2,3,4,1] => [3,1] => [3,1]
=> 0
[2,1,3,4] => [4,3,1,2] => [1,1,2] => [2,1,1]
=> 1
[2,1,4,3] => [3,4,1,2] => [2,2] => [2,2]
=> 2
[2,3,1,4] => [4,1,3,2] => [1,2,1] => [2,1,1]
=> 1
[2,3,4,1] => [1,4,3,2] => [2,1,1] => [2,1,1]
=> 1
[2,4,1,3] => [3,1,4,2] => [1,2,1] => [2,1,1]
=> 1
[2,4,3,1] => [1,3,4,2] => [3,1] => [3,1]
=> 0
[3,1,2,4] => [4,2,1,3] => [1,1,2] => [2,1,1]
=> 1
[3,1,4,2] => [2,4,1,3] => [2,2] => [2,2]
=> 2
[3,2,1,4] => [4,1,2,3] => [1,3] => [3,1]
=> 0
[3,2,4,1] => [1,4,2,3] => [2,2] => [2,2]
=> 2
[3,4,1,2] => [2,1,4,3] => [1,2,1] => [2,1,1]
=> 1
[3,4,2,1] => [1,2,4,3] => [3,1] => [3,1]
=> 0
[4,1,2,3] => [3,2,1,4] => [1,1,2] => [2,1,1]
=> 1
[4,1,3,2] => [2,3,1,4] => [2,2] => [2,2]
=> 2
[4,2,1,3] => [3,1,2,4] => [1,3] => [3,1]
=> 0
[4,2,3,1] => [1,3,2,4] => [2,2] => [2,2]
=> 2
[4,3,1,2] => [2,1,3,4] => [1,3] => [3,1]
=> 0
[4,3,2,1] => [1,2,3,4] => [4] => [4]
=> 0
[1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1] => [1,1,1,1,1]
=> 0
[1,2,3,5,4] => [4,5,3,2,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,2,4,3,5] => [5,3,4,2,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,2,4,5,3] => [3,5,4,2,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,2,5,3,4] => [4,3,5,2,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,2,5,4,3] => [3,4,5,2,1] => [3,1,1] => [3,1,1]
=> 0
[1,3,2,4,5] => [5,4,2,3,1] => [1,1,2,1] => [2,1,1,1]
=> 1
[1,3,2,5,4] => [4,5,2,3,1] => [2,2,1] => [2,2,1]
=> 2
[1,3,4,2,5] => [5,2,4,3,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,3,4,5,2] => [2,5,4,3,1] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,3,5,2,4] => [4,2,5,3,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,3,5,4,2] => [2,4,5,3,1] => [3,1,1] => [3,1,1]
=> 0
[1,4,2,3,5] => [5,3,2,4,1] => [1,1,2,1] => [2,1,1,1]
=> 1
[1,4,2,5,3] => [3,5,2,4,1] => [2,2,1] => [2,2,1]
=> 2
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,1] => [3,1,1]
=> 0
[1,4,3,5,2] => [2,5,3,4,1] => [2,2,1] => [2,2,1]
=> 2
[1,4,5,2,3] => [3,2,5,4,1] => [1,2,1,1] => [2,1,1,1]
=> 1
[] => [] => [] => ?
=> ? = 0
[2,1,4,3,12,11,10,9,8,7,6,5] => [5,6,7,8,9,10,11,12,3,4,1,2] => [8,2,2] => ?
=> ? = 2
[2,1,12,5,4,11,10,9,8,7,6,3] => [3,6,7,8,9,10,11,4,5,12,1,2] => [7,3,2] => ?
=> ? = 1
[2,1,8,7,6,5,4,3,10,9,12,11] => [11,12,9,10,3,4,5,6,7,8,1,2] => [2,2,6,2] => ?
=> ? = 3
[2,1,10,9,8,7,6,5,4,3,12,11] => [11,12,3,4,5,6,7,8,9,10,1,2] => [2,8,2] => ?
=> ? = 2
[2,1,12,9,8,7,6,5,4,11,10,3] => [3,10,11,4,5,6,7,8,9,12,1,2] => [3,7,2] => ?
=> ? = 1
[4,3,2,1,6,5,8,7,10,9,12,11] => [11,12,9,10,7,8,5,6,1,2,3,4] => [2,2,2,2,4] => ?
=> ? = 4
[4,3,2,1,12,11,10,9,8,7,6,5] => [5,6,7,8,9,10,11,12,1,2,3,4] => [8,4] => ?
=> ? = 0
[10,3,2,9,8,7,6,5,4,1,12,11] => [11,12,1,4,5,6,7,8,9,2,3,10] => [2,7,3] => ?
=> ? = 1
[6,5,4,3,2,1,8,7,10,9,12,11] => [11,12,9,10,7,8,1,2,3,4,5,6] => [2,2,2,6] => ?
=> ? = 3
[6,5,4,3,2,1,8,7,12,11,10,9] => [9,10,11,12,7,8,1,2,3,4,5,6] => [4,2,6] => ?
=> ? = 1
[6,5,4,3,2,1,10,9,8,7,12,11] => [11,12,7,8,9,10,1,2,3,4,5,6] => [2,4,6] => ?
=> ? = 1
[6,5,4,3,2,1,12,9,8,11,10,7] => [7,10,11,8,9,12,1,2,3,4,5,6] => [3,3,6] => ?
=> ? = 0
[10,5,4,3,2,7,6,9,8,1,12,11] => [11,12,1,8,9,6,7,2,3,4,5,10] => [2,3,2,5] => ?
=> ? = 2
[12,5,4,3,2,7,6,9,8,11,10,1] => [1,10,11,8,9,6,7,2,3,4,5,12] => [3,2,2,5] => ?
=> ? = 2
[8,7,6,5,4,3,2,1,10,9,12,11] => [11,12,9,10,1,2,3,4,5,6,7,8] => [2,2,8] => ?
=> ? = 2
[8,7,6,5,4,3,2,1,12,11,10,9] => [9,10,11,12,1,2,3,4,5,6,7,8] => [4,8] => ?
=> ? = 0
[10,7,6,5,4,3,2,9,8,1,12,11] => [11,12,1,8,9,2,3,4,5,6,7,10] => [2,3,7] => ?
=> ? = 1
[10,9,6,5,4,3,8,7,2,1,12,11] => [11,12,1,2,7,8,3,4,5,6,9,10] => [2,4,6] => ?
=> ? = 1
[12,9,6,5,4,3,8,7,2,11,10,1] => [1,10,11,2,7,8,3,4,5,6,9,12] => [3,3,6] => ?
=> ? = 0
[12,11,6,5,4,3,8,7,10,9,2,1] => [1,2,9,10,7,8,3,4,5,6,11,12] => [4,2,6] => ?
=> ? = 1
[10,9,8,7,6,5,4,3,2,1,12,11] => [11,12,1,2,3,4,5,6,7,8,9,10] => [2,10] => ?
=> ? = 1
[9,2,3,1,4,5,6,7,8] => [8,7,6,5,4,1,3,2,9] => ? => ?
=> ? = 2
[8,4,6,1,7,3,2,5] => [5,2,3,7,1,6,4,8] => ? => ?
=> ? = 2
Description
The number of twos in an integer partition. The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St000683
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St000683: Dyck paths ⟶ ℤResult quality: 76% values known / values provided: 76%distinct values known / distinct values provided: 83%
Values
[1] => [1] => [1,0]
=> [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[7,6,5,4,8,3,2,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[8,7,5,6,3,4,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[8,7,5,6,4,2,3,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,7,6,4,5,2,3,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[8,6,5,7,3,2,4,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[7,6,5,4,3,2,8,1] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[6,5,4,3,7,2,8,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,5,6,4,3,1,2] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,4,5,3,1,2] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,3,4,1,2] => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[8,7,5,6,3,4,1,2] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[8,7,6,5,4,2,1,3] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,4,1,2,3] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,7,6,4,5,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[7,6,5,8,3,2,1,4] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,1,2,3,4] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,7,6,4,3,2,1,5] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,4,2,1,3,5] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,7,6,1,2,3,4,5] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[8,6,5,4,3,2,1,7] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,6,5,4,3,1,2,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,5,4,2,1,3,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,4,3,2,1,5,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,4,2,1,3,5,7] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,3,2,1,4,5,6,7] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[7,6,5,4,3,2,1,8] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,4,5,3,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[6,5,4,7,3,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,4,3,5,2,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[7,5,4,3,6,2,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[6,5,4,3,2,1,7,8] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[5,4,3,2,1,6,7,8] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[4,3,2,1,5,6,7,8] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[3,2,1,8,7,6,5,4] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[3,2,1,6,5,8,7,4] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[4,3,2,1,8,7,6,5] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[5,4,3,2,1,8,7,6] => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0
[6,5,4,3,2,1,8,7] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[4,3,2,1,6,5,8,7] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,4,3,2,7,6,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[4,3,2,7,5,6,8,1] => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[4,3,2,8,5,7,6,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[6,3,2,5,4,1,8,7] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,3,2,5,4,7,6,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[8,3,2,7,6,5,4,1] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[7,4,3,6,5,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,3,5,4,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
Description
The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps.
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001139: Dyck paths ⟶ ℤResult quality: 76% values known / values provided: 76%distinct values known / distinct values provided: 83%
Values
[1] => [1] => [1,0]
=> [1,0]
=> ? = 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,4,5,3,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[7,6,5,4,8,3,2,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[8,7,5,6,3,4,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[8,7,5,6,4,2,3,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,7,6,4,5,2,3,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[8,6,5,7,3,2,4,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[7,6,5,4,3,2,8,1] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[6,5,4,3,7,2,8,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,5,6,4,3,1,2] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,4,5,3,1,2] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,3,4,1,2] => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[8,7,5,6,3,4,1,2] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[8,7,6,5,4,2,1,3] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,4,1,2,3] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,7,6,4,5,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[7,6,5,8,3,2,1,4] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,1,2,3,4] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,7,6,4,3,2,1,5] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,4,2,1,3,5] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,7,6,1,2,3,4,5] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[8,6,5,4,3,2,1,7] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,6,5,4,3,1,2,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,5,4,2,1,3,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,4,3,2,1,5,7] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,6,4,2,1,3,5,7] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,3,2,1,4,5,6,7] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[7,6,5,4,3,2,1,8] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,4,5,3,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[6,5,4,7,3,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,4,3,5,2,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[7,5,4,3,6,2,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[6,5,4,3,2,1,7,8] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[5,4,3,2,1,6,7,8] => [1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 0
[4,3,2,1,5,6,7,8] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[3,2,1,8,7,6,5,4] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[3,2,1,6,5,8,7,4] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[4,3,2,1,8,7,6,5] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[5,4,3,2,1,8,7,6] => [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0
[6,5,4,3,2,1,8,7] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[4,3,2,1,6,5,8,7] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,4,3,2,7,6,1,8] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[4,3,2,7,5,6,8,1] => [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 2
[4,3,2,8,5,7,6,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[6,3,2,5,4,1,8,7] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,3,2,5,4,7,6,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[8,3,2,7,6,5,4,1] => [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[7,4,3,6,5,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,3,5,4,2,1,8] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
Description
The number of occurrences of hills of size 2 in a Dyck path. A hill of size two is a subpath beginning at height zero, consisting of two up steps followed by two down steps.
Mp00064: Permutations reversePermutations
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000658: Dyck paths ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 83%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0
[1,2] => [2,1] => [1,1] => [1,0,1,0]
=> 0
[2,1] => [1,2] => [2] => [1,1,0,0]
=> 1
[1,2,3] => [3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[2,1,3] => [3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[3,1,2] => [2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,2,3,4] => [4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,3,2,4] => [4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,4,2,3] => [3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[2,1,3,4] => [4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[2,1,4,3] => [3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,4,1,3] => [3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[3,1,2,4] => [4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[3,1,4,2] => [2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[3,2,4,1] => [1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[4,1,2,3] => [3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[4,1,3,2] => [2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[4,2,3,1] => [1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[4,3,2,1] => [1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,3,4,5] => [5,4,3,2,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,5,3,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,4,3,5] => [5,3,4,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,4,5,3] => [3,5,4,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,2,5,3,4] => [4,3,5,2,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,2,5,4,3] => [3,4,5,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,3,2,4,5] => [5,4,2,3,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,2,5,4] => [4,5,2,3,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,3,4,2,5] => [5,2,4,3,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,4,5,2] => [2,5,4,3,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,3,5,2,4] => [4,2,5,3,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,5,4,2] => [2,4,5,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,4,2,3,5] => [5,3,2,4,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,4,2,5,3] => [3,5,2,4,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,3,2,5] => [5,2,3,4,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,4,3,5,2] => [2,5,3,4,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,5,2,3] => [3,2,5,4,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,5,3,2] => [2,3,5,4,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[8,7,6,5,4,3,2,1] => [1,2,3,4,5,6,7,8] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[7,6,8,5,4,3,2,1] => [1,2,3,4,5,8,6,7] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[7,8,5,6,4,3,2,1] => [1,2,3,4,6,5,8,7] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[7,8,6,4,5,3,2,1] => [1,2,3,5,4,6,8,7] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[8,6,7,4,5,3,2,1] => [1,2,3,5,4,7,6,8] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,6,5,4,8,3,2,1] => [1,2,3,8,4,5,6,7] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[6,5,7,4,8,3,2,1] => [1,2,3,8,4,7,5,6] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,8,6,5,3,4,2,1] => [1,2,4,3,5,6,8,7] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[8,6,7,5,3,4,2,1] => [1,2,4,3,5,7,6,8] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,7,5,6,3,4,2,1] => [1,2,4,3,6,5,7,8] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[6,7,8,3,4,5,2,1] => [1,2,5,4,3,8,7,6] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[6,5,8,7,4,3,2,1] => [1,2,3,4,7,8,5,6] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[3,5,8,7,6,4,2,1] => [1,2,4,6,7,8,5,3] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[4,3,6,5,8,7,2,1] => [1,2,7,8,5,6,3,4] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[2,6,8,7,5,4,3,1] => [1,3,4,5,7,8,6,2] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[2,3,5,6,8,7,4,1] => [1,4,7,8,6,5,3,2] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[3,2,6,5,4,8,7,1] => [1,7,8,4,5,6,2,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,8,7,6,5,4,3,2] => [2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,7,8,6,5,4,3,2] => [2,3,4,5,6,8,7,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[1,6,8,7,5,4,3,2] => [2,3,4,5,7,8,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[1,7,6,8,5,4,3,2] => [2,3,4,5,8,6,7,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,6,7,8,5,4,3,2] => [2,3,4,5,8,7,6,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 0
[1,5,8,7,6,4,3,2] => [2,3,4,6,7,8,5,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 0
[1,7,6,5,8,4,3,2] => [2,3,4,8,5,6,7,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,3,5,7,8,6,4,2] => [2,4,6,8,7,5,3,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,4,3,8,7,6,5,2] => [2,5,6,7,8,3,4,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,6,5,4,3,8,7,2] => [2,7,8,3,4,5,6,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,4,3,6,5,8,7,2] => [2,7,8,5,6,3,4,1] => [3,2,2,1] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[2,1,8,7,6,5,4,3] => [3,4,5,6,7,8,1,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,2,6,7,8,5,4,3] => [3,4,5,8,7,6,2,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[3,2,1,8,7,6,5,4] => [4,5,6,7,8,1,2,3] => [5,3] => [1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 0
[3,2,1,6,5,8,7,4] => [4,7,8,5,6,1,2,3] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[4,3,2,1,8,7,6,5] => [5,6,7,8,1,2,3,4] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[3,4,2,1,7,8,6,5] => [5,6,8,7,1,2,4,3] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0
[2,4,3,1,6,8,7,5] => [5,7,8,6,1,3,4,2] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0
[3,2,4,1,6,8,7,5] => [5,7,8,6,1,4,2,3] => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[2,1,4,3,8,7,6,5] => [5,6,7,8,3,4,1,2] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[2,1,4,3,6,8,7,5] => [5,7,8,6,3,4,1,2] => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,4,3,2,1,8,7,6] => [6,7,8,1,2,3,4,5] => [3,5] => [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[3,2,5,4,1,8,7,6] => [6,7,8,1,4,5,2,3] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[3,2,1,4,5,8,7,6] => [6,7,8,5,4,1,2,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,8,4,7,6,5,3,2] => [2,3,5,6,7,4,8,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,8,5,4,7,6,3,2] => [2,3,6,7,4,5,8,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,8,7,4,5,6,3,2] => [2,3,6,5,4,7,8,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,8,7,4,6,5,3,2] => [2,3,5,6,4,7,8,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,8,6,5,4,7,3,2] => [2,3,7,4,5,6,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,8,7,5,4,6,3,2] => [2,3,6,4,5,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,8,7,5,6,4,3,2] => [2,3,4,6,5,7,8,1] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[2,1,8,5,4,7,6,3] => [3,6,7,4,5,8,1,2] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
Description
The number of rises of length 2 of a Dyck path. This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1]. A related statistic is the number of double rises in a Dyck path, [[St000024]].
Matching statistic: St001465
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001465: Permutations ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[2,1,3,4,7,5,6] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
[2,1,3,7,4,5,6] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[2,1,6,3,4,5,7] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[2,1,7,3,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[2,1,7,6,5,4,3] => [1,2,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,4,5,6,7,3] => ? = 1
[3,1,2,4,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[3,2,4,5,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,2,3,5,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,1,6,2,3,5,7] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[4,2,3,5,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[4,2,5,1,3,6,7] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[4,3,2,5,6,7,1] => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 1
[4,3,5,2,6,7,1] => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 3
[4,3,6,5,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 1
[5,1,2,3,4,7,6] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,6,4,7] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
[5,1,2,3,6,7,4] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,1,2,3,7,4,6] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
[5,1,2,6,3,4,7] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[5,1,6,2,3,4,7] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
[5,1,6,2,3,7,4] => [1,2,3,1] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ? = 3
[5,2,3,4,6,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[5,2,6,7,1,3,4] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[5,3,2,4,6,7,1] => [1,1,4,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,3,1,4,5,7,6] => ? = 1
[5,3,2,6,1,4,7] => [1,1,2,3] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => ? = 1
[5,3,6,7,1,2,4] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[5,4,3,2,6,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 1
[5,4,3,6,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 0
[5,4,6,3,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 1
[5,4,6,7,1,2,3] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[6,1,2,3,4,7,5] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,1,2,3,7,4,5] => [1,4,2] => [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ? = 2
[6,1,2,7,3,4,5] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[6,2,3,4,5,7,1] => [1,5,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ? = 2
[6,2,4,5,3,1,7] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 1
[6,2,5,4,3,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 1
[6,3,2,5,4,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 0
[6,3,4,2,5,1,7] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
[6,3,4,5,2,1,7] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => ? = 1
[6,3,4,7,1,2,5] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[6,3,5,4,2,1,7] => [1,2,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => ? = 1
[6,4,3,2,5,1,7] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 1
[6,4,3,2,7,1,5] => [1,1,1,2,2] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => ? = 1
[6,4,3,5,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 0
[6,4,5,7,1,2,3] => [1,3,3] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ? = 2
[6,4,7,2,5,1,3] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
[6,4,7,3,5,1,2] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
[6,5,3,4,2,1,7] => [1,1,2,1,2] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => ? = 0
[6,5,7,3,4,1,2] => [1,2,2,2] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => ? = 3
[7,2,3,1,4,5,6] => [1,2,4] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ? = 2
Description
The number of adjacent transpositions in the cycle decomposition of a permutation.
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001125: Dyck paths ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[7,6,8,5,4,3,2,1] => [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[7,8,5,6,4,3,2,1] => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[7,8,6,4,5,3,2,1] => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,6,7,4,5,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[7,6,5,4,8,3,2,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[6,5,7,4,8,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[7,8,6,5,3,4,2,1] => [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[8,6,7,5,3,4,2,1] => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[8,7,5,6,3,4,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[6,7,8,3,4,5,2,1] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[7,8,6,5,4,2,3,1] => [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[8,6,7,5,4,2,3,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[8,7,5,6,4,2,3,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[8,7,6,4,5,2,3,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[8,6,5,7,3,2,4,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[6,7,8,5,2,3,4,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[8,5,6,7,2,3,4,1] => [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[7,8,3,2,4,5,6,1] => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1
[7,6,5,4,3,2,8,1] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[6,5,7,4,3,2,8,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[6,5,4,3,7,2,8,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[5,4,6,3,7,2,8,1] => [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[3,4,5,2,6,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[5,2,3,4,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[4,3,2,5,6,7,8,1] => [1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
[3,4,2,5,6,7,8,1] => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[4,2,3,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[3,2,4,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[7,8,6,5,4,3,1,2] => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[8,6,7,5,4,3,1,2] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,7,5,6,4,3,1,2] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[8,7,6,4,5,3,1,2] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[8,7,6,5,3,4,1,2] => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[8,7,5,6,3,4,1,2] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,8,5,6,3,4,1,2] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,6,7,8,3,4,1,2] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,8,3,4,5,6,1,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[3,4,5,6,7,8,1,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[8,7,6,5,4,2,1,3] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[7,6,8,5,4,2,1,3] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,7,6,5,4,1,2,3] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[6,7,8,5,4,1,2,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[8,5,6,7,4,1,2,3] => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[8,7,6,4,5,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[8,6,7,4,5,1,2,3] => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[8,7,4,5,6,1,2,3] => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[7,8,4,5,6,1,2,3] => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
Description
The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra.
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St001276: Dyck paths ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[7,6,8,5,4,3,2,1] => [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[7,8,5,6,4,3,2,1] => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[7,8,6,4,5,3,2,1] => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[8,6,7,4,5,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[7,6,5,4,8,3,2,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[6,5,7,4,8,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[7,8,6,5,3,4,2,1] => [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[8,6,7,5,3,4,2,1] => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[8,7,5,6,3,4,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[6,7,8,3,4,5,2,1] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[7,8,6,5,4,2,3,1] => [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[8,6,7,5,4,2,3,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[8,7,5,6,4,2,3,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[8,7,6,4,5,2,3,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[8,6,5,7,3,2,4,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[6,7,8,5,2,3,4,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[8,5,6,7,2,3,4,1] => [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[7,8,3,2,4,5,6,1] => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1
[7,6,5,4,3,2,8,1] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[6,5,7,4,3,2,8,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[6,5,4,3,7,2,8,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[5,4,6,3,7,2,8,1] => [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[3,4,5,2,6,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[5,2,3,4,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[4,3,2,5,6,7,8,1] => [1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 1
[3,4,2,5,6,7,8,1] => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> ? = 2
[4,2,3,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[3,2,4,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1
[8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[7,8,6,5,4,3,1,2] => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[8,6,7,5,4,3,1,2] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,7,5,6,4,3,1,2] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[8,7,6,4,5,3,1,2] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[8,7,6,5,3,4,1,2] => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[8,7,5,6,3,4,1,2] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,8,5,6,3,4,1,2] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[5,6,7,8,3,4,1,2] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[7,8,3,4,5,6,1,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[3,4,5,6,7,8,1,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[8,7,6,5,4,2,1,3] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[7,6,8,5,4,2,1,3] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,7,6,5,4,1,2,3] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[6,7,8,5,4,1,2,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[8,5,6,7,4,1,2,3] => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[8,7,6,4,5,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[8,6,7,4,5,1,2,3] => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 3
[8,7,4,5,6,1,2,3] => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[7,8,4,5,6,1,2,3] => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 2
Description
The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. Generalising the notion of k-regular modules from simple to arbitrary indecomposable modules, we call an indecomposable module $M$ over an algebra $A$ k-regular in case it has projective dimension k and $Ext_A^i(M,A)=0$ for $i \neq k$ and $Ext_A^k(M,A)$ is 1-dimensional. The number of Dyck paths where the statistic returns 0 might be given by [[OEIS:A035929]] .
Matching statistic: St001189
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001189: Dyck paths ⟶ ℤResult quality: 45% values known / values provided: 45%distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1,0]
=> [1,0]
=> 0
[1,2] => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[2,1] => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[8,7,6,5,4,3,2,1] => [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[7,6,8,5,4,3,2,1] => [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[7,8,5,6,4,3,2,1] => [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[7,8,6,4,5,3,2,1] => [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[8,6,7,4,5,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[7,6,5,4,8,3,2,1] => [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[6,5,7,4,8,3,2,1] => [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 2
[7,8,6,5,3,4,2,1] => [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 0
[8,6,7,5,3,4,2,1] => [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[8,7,5,6,3,4,2,1] => [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[6,7,8,3,4,5,2,1] => [3,3,1,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> ? = 1
[7,8,6,5,4,2,3,1] => [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,6,7,5,4,2,3,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[8,7,5,6,4,2,3,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[8,7,6,4,5,2,3,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[8,6,5,7,3,2,4,1] => [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[6,7,8,5,2,3,4,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1
[8,5,6,7,2,3,4,1] => [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 3
[7,8,3,2,4,5,6,1] => [2,1,4,1] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,6,5,4,3,2,8,1] => [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[6,5,7,4,3,2,8,1] => [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 2
[6,5,4,3,7,2,8,1] => [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[5,4,6,3,7,2,8,1] => [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 4
[3,4,5,2,6,7,8,1] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[5,2,3,4,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,3,2,5,6,7,8,1] => [1,1,5,1] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[3,4,2,5,6,7,8,1] => [2,5,1] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[4,2,3,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[3,2,4,5,6,7,8,1] => [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[2,3,4,5,6,7,8,1] => [7,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,7,6,5,4,3,1,2] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,8,6,5,4,3,1,2] => [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,6,7,5,4,3,1,2] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
[8,7,5,6,4,3,1,2] => [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,4,5,3,1,2] => [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[8,7,6,5,3,4,1,2] => [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[8,7,5,6,3,4,1,2] => [1,1,2,2,2] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[7,8,5,6,3,4,1,2] => [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[5,6,7,8,3,4,1,2] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[7,8,3,4,5,6,1,2] => [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[3,4,5,6,7,8,1,2] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[8,7,6,5,4,2,1,3] => [1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[7,6,8,5,4,2,1,3] => [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 1
[8,7,6,5,4,1,2,3] => [1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[6,7,8,5,4,1,2,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 0
[8,5,6,7,4,1,2,3] => [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[8,7,6,4,5,1,2,3] => [1,1,1,2,3] => [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[8,6,7,4,5,1,2,3] => [1,2,2,3] => [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 3
[8,7,4,5,6,1,2,3] => [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[7,8,4,5,6,1,2,3] => [2,3,3] => [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
Description
The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000214
Mp00071: Permutations descent compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000214: Permutations ⟶ ℤResult quality: 44% values known / values provided: 44%distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1,0]
=> [1] => 0
[1,2] => [2] => [1,1,0,0]
=> [1,2] => 0
[2,1] => [1,1] => [1,0,1,0]
=> [2,1] => 1
[1,2,3] => [3] => [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,3,2] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[2,1,3] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[2,3,1] => [2,1] => [1,1,0,0,1,0]
=> [1,3,2] => 1
[3,1,2] => [1,2] => [1,0,1,1,0,0]
=> [2,1,3] => 1
[3,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> [2,3,1] => 0
[1,2,3,4] => [4] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,2,4,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,3,2,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,3,4,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,4,2,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,4,3,2] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[2,1,3,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[2,1,4,3] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[2,3,1,4] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,3,4,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[2,4,1,3] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[2,4,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[3,1,2,4] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[3,1,4,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,2,1,4] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[3,2,4,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[3,4,1,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[3,4,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[4,1,2,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[4,1,3,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,2,1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[4,2,3,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[4,3,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[4,3,2,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 0
[1,2,3,4,5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,2,3,5,4] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,4,3,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,4,5,3] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,2,5,3,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,5,4,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 0
[1,3,2,4,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,3,2,5,4] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,3,4,2,5] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,4,5,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,3,5,2,4] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,3,5,4,2] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 0
[1,4,2,3,5] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,4,2,5,3] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,3,2,5] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 0
[1,4,3,5,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,4,5,2,3] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,2,3,4,7,6,5] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 0
[1,2,3,5,4,6,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,3,5,4,7,6] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,3,5,7,6,4] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 0
[1,2,3,6,4,5,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,3,6,4,7,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,3,6,5,4,7] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,3,6,5,7,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,3,6,7,5,4] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 0
[1,2,3,7,4,5,6] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,3,7,4,6,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,3,7,5,4,6] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,3,7,5,6,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,3,7,6,4,5] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,3,7,6,5,4] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => ? = 0
[1,2,4,3,5,6,7] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => ? = 1
[1,2,4,3,5,7,6] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ? = 2
[1,2,4,3,6,5,7] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,4,3,6,7,5] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ? = 2
[1,2,4,3,7,5,6] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,4,3,7,6,5] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => ? = 1
[1,2,4,5,3,6,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,4,5,3,7,6] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,4,5,7,6,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 0
[1,2,4,6,3,5,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,4,6,3,7,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,4,6,5,3,7] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,4,6,5,7,3] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,4,6,7,5,3] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 0
[1,2,4,7,3,5,6] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,4,7,3,6,5] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,4,7,5,3,6] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,4,7,5,6,3] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,4,7,6,3,5] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
[1,2,4,7,6,5,3] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => ? = 0
[1,2,5,3,4,6,7] => [3,4] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => ? = 1
[1,2,5,3,4,7,6] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ? = 2
[1,2,5,3,6,4,7] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,5,3,6,7,4] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ? = 2
[1,2,5,3,7,4,6] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,5,3,7,6,4] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => ? = 1
[1,2,5,4,3,6,7] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => ? = 0
[1,2,5,4,3,7,6] => [3,1,2,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,2,4,5,3,7,6] => ? = 1
[1,2,5,4,6,3,7] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,5,4,6,7,3] => [3,3,1] => [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ? = 2
[1,2,5,4,7,3,6] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ? = 2
[1,2,5,4,7,6,3] => [3,2,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,6,7,5] => ? = 1
[1,2,5,6,3,4,7] => [4,3] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,2,5,6,3,7,4] => [4,2,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,2,5,6,4,3,7] => [4,1,2] => [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => ? = 0
Description
The number of adjacencies of a permutation. An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''. This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
The following 18 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001274The number of indecomposable injective modules with projective dimension equal to two. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000648The number of 2-excedences of a permutation. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001624The breadth of a lattice.