searching the database
Your data matches 20 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000884
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000884: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000884: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [3,2,1] => 0
[1,0,1,1,0,0]
=> [2,3,1] => 1
[1,1,0,0,1,0]
=> [3,1,2] => 1
[1,1,0,1,0,0]
=> [2,1,3] => 1
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 1
Description
The number of isolated descents of a permutation.
A descent $i$ is isolated if neither $i+1$ nor $i-1$ are descents. If a permutation has only isolated descents, then it is called primitive in [1].
Matching statistic: St001657
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St001657: Integer partitions ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1]
=> 0
[1,0,1,0]
=> [1,1] => [2] => [2]
=> 1
[1,1,0,0]
=> [2] => [1,1] => [1,1]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [3]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,2] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,2] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [4]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => [3,1]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [2,2]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [2,2]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => [2,1,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => [3,1]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [2,1,1]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,3] => [3,1]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,3] => [3,1]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [2,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => [2,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,2] => [2,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,2] => [2,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [5]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [4,1] => [4,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => [3,2]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [3,2] => [3,2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => [3,1,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => [3,2]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [2,3] => [3,2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,3] => [3,2]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => [2,2,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [2,2,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [2,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [2,2,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [2,1,1,1] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => [4,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [3,1,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => [2,2,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,2,1,1] => [2,1,1,1]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => [4,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [3,1,1]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,4] => [4,1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,4] => [4,1]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [3,1,1]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => [2,2,1]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => [2,2,1]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => [2,2,1]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,2,1,1] => [2,1,1,1]
=> 1
[]
=> [] => [] => ?
=> ? = 0
[1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? => ? => ?
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? => ? => ?
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? => ? => ?
=> ? = 3
Description
The number of twos in an integer partition.
The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St000683
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000683: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000683: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,6,2] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,8,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[]
=> [] => ?
=> ?
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,6] => [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [5,4] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> [5,2,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0]
=> [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
Description
The number of points below the Dyck path such that the diagonal to the north-east hits the path between two down steps, and the diagonal to the north-west hits the path between two up steps.
Matching statistic: St001139
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001139: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St001139: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,6,2] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,8,1] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[]
=> [] => ?
=> ?
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,7] => [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,6] => [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [5,4] => [1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> [5,2,2] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [5,1,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0]
=> [6,3] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [6,1,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [7,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0]
=> [8,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
Description
The number of occurrences of hills of size 2 in a Dyck path.
A hill of size two is a subpath beginning at height zero, consisting of two up steps followed by two down steps.
Matching statistic: St000658
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Mp00039: Integer compositions —complement⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000658: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [8] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [6,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [4,3,1] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [4,4] => [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [4,2,2] => [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [3,4,1] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [3,3,2] => [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,3,3] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,8] => [2,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => [1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => [2,1,1,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => [1,1,1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [6,2,1] => [1,1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,7,1] => [2,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,6,2] => [2,1,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,8,1] => [2,1,1,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => [2,1,1,1,1,1,1,1,1,1] => ?
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0]
=> [7,2] => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0]
=> [8,2] => [1,1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [8,1,1] => [1,1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[]
=> [] => [] => ?
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1,1] => [1,8] => [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,1,2] => [1,7,1] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,1,2,1] => [1,6,2] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> ? = 1
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,4,4] => [1,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [2,1,1,2,1,1,1] => [1,4,4] => [1,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [2,7] => [1,2,1,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,2,2] => [1,1,2,2,2,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1,1,1,1] => [1,1,7] => [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 0
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [3,6] => [1,1,2,1,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [4,1,1,1,1,1] => [1,1,1,6] => [1,0,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,0]
=> [5,4] => [1,1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,0]
=> [5,2,2] => [1,1,1,1,2,2,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [5,1,1,1,1] => [1,1,1,1,5] => [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0]
=> [6,3] => [1,1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [6,1,1,1] => [1,1,1,1,1,4] => [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0,0]
=> [7,2] => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [7,2] => [1,1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [7,1,1] => [1,1,1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0]
=> [8,1] => [1,1,1,1,1,1,1,2] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
Description
The number of rises of length 2 of a Dyck path.
This is also the number of $(1,1)$ steps of the associated Łukasiewicz path, see [1].
A related statistic is the number of double rises in a Dyck path, [[St000024]].
Matching statistic: St001465
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St001465: Permutations ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 80%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St001465: Permutations ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 0
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 0
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [2,1,7,3,4,5,6,8] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,-1,0,0,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,-1,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 1
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,0,-1,1,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 4
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7,8] => ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0,0],[0,0,0,1,0,-1,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [2,1,3,4,5,8,6,7] => ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0,0],[1,0,0,0,0,0,0,0],[0,1,-1,1,0,0,0,0],[0,0,1,-1,1,0,0,0],[0,0,0,1,-1,1,0,0],[0,0,0,0,1,-1,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> [2,1,3,4,5,7,6,8] => ? = 2
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,0,1,0]]
=> [1,6,2,3,4,5,8,7] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,0,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,0,0,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,6,2,3,4,5,8,7] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,-1,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> [1,6,2,3,4,5,8,7] => ? = 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0,1,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,-1,1,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,0,0,1]]
=> ? => ? = 0
[1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,1,0,0,0]
=> [[0,0,0,0,0,1,0,0],[1,0,0,0,0,-1,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,0,1,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,-1,0,1,0],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 2
[1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0,0],[1,0,0,-1,0,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> [1,4,2,3,8,5,6,7] => ? = 0
[1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [[0,0,0,0,1,0,0,0],[1,0,0,0,-1,0,1,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,1,0,0,-1,1],[0,0,0,0,1,0,0,0],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0,0,0],[1,0,-1,1,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,1,0,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,1,0,-1,1],[0,0,0,0,0,1,0,0],[0,0,0,0,0,0,1,0]]
=> ? => ? = 0
[1,1,0,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0,0],[1,-1,1,0,0,0,0,0],[0,1,0,0,0,0,0,0],[0,0,0,0,1,0,0,0],[0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0],[0,0,0,0,0,1,-1,1],[0,0,0,0,0,0,1,0]]
=> ? => ? = 3
Description
The number of adjacent transpositions in the cycle decomposition of a permutation.
Matching statistic: St000214
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 0
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 0
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,4,2,3,6,5,7] => ? = 1
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,4,2,3,5,7,6] => ? = 1
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,7,3,4,5,6] => ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,-1,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,7,3,4,5,6] => ? = 0
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
Description
The number of adjacencies of a permutation.
An adjacency of a permutation $\pi$ is an index $i$ such that $\pi(i)-1 = \pi(i+1)$. Adjacencies are also known as ''small descents''.
This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St000237
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Mp00035: Dyck paths —to alternating sign matrix⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 56% ●values known / values provided: 56%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[1,0,-1,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[1,0,0,-1,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[1,0,-1,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 2
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,0,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,5,4,7,6] => ? = 3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,0,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,6,2,3,4,5,7] => ? = 0
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,2,3,4,6,7] => ? = 0
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,0,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,-1,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,4,2,3,7,5,6] => ? = 0
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,4,2,3,6,5,7] => ? = 1
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,4,2,3,5,7,6] => ? = 1
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,0,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,0,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,3,2,7,4,5,6] => ? = 1
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,0,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,1,0,0,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,3,2,5,4,7,6] => ? = 3
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,3,2,4,5,7,6] => ? = 2
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,7,3,4,5,6] => ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,-1,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [[0,0,0,0,1,0,0],[1,0,0,0,-1,1,0],[0,1,0,0,0,-1,1],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,7,3,4,5,6] => ? = 0
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,0,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,4,3,7,5,6] => ? = 1
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,4,3,5,6,7] => ? = 1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0,0],[1,0,-1,1,0,0,0],[0,1,0,-1,1,0,0],[0,0,1,0,-1,0,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [[0,0,0,1,0,0,0],[1,0,0,-1,1,0,0],[0,1,0,0,-1,1,0],[0,0,1,0,0,-1,1],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,7,4,5,6] => ? = 0
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0,0],[1,-1,1,0,0,0,0],[0,1,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,0,1],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0]]
=> [1,2,3,4,7,5,6] => ? = 0
Description
The number of small exceedances.
This is the number of indices $i$ such that $\pi_i=i+1$.
Matching statistic: St001125
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001125: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 80%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001125: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
Description
The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra.
Matching statistic: St001276
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001276: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 80%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001276: Dyck paths ⟶ ℤResult quality: 54% ●values known / values provided: 54%●distinct values known / distinct values provided: 80%
Values
[1,0]
=> [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,3,3] => [1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,1,1,1,2] => [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,2,1,2,1,1] => [1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,2,1,1,1,1,1] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,2,1,1,2,1] => [1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,2,1,1,1] => [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,2,2,1] => [1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 4
[1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,3,1,3] => [1,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,3,3,1] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 3
[1,0,1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,4,3] => [1,0,1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [1,5,1,1] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,5,2] => [1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,6,1] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,2,1,1,1] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,2,1,1,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,2,1,1] => [1,1,0,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,2,4] => [1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,4,2] => [1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [2,1,1,2,1,1] => [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,1,2] => [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,1,2,1] => [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,1,1,3] => [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
Description
The number of 2-regular indecomposable modules in the corresponding Nakayama algebra.
Generalising the notion of k-regular modules from simple to arbitrary indecomposable modules, we call an indecomposable module $M$ over an algebra $A$ k-regular in case it has projective dimension k and $Ext_A^i(M,A)=0$ for $i \neq k$ and $Ext_A^k(M,A)$ is 1-dimensional.
The number of Dyck paths where the statistic returns 0 might be given by [[OEIS:A035929]] .
The following 10 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001466The number of transpositions swapping cyclically adjacent numbers in a permutation. St001061The number of indices that are both descents and recoils of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001274The number of indecomposable injective modules with projective dimension equal to two. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000648The number of 2-excedences of a permutation. St001330The hat guessing number of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!