Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000893: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1,0],[0,1]]
=> 2
[[0,1],[1,0]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> 2
[[0,1,0],[1,0,0],[0,0,1]]
=> 2
[[1,0,0],[0,0,1],[0,1,0]]
=> 2
[[0,1,0],[1,-1,1],[0,1,0]]
=> 3
[[0,0,1],[1,0,0],[0,1,0]]
=> 3
[[0,1,0],[0,0,1],[1,0,0]]
=> 3
[[0,0,1],[0,1,0],[1,0,0]]
=> 2
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 2
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 3
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 4
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 2
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> 4
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 2
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> 4
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 4
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 3
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> 4
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 3
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 4
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 2
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> 4
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 3
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 3
Description
The number of distinct diagonal sums of an alternating sign matrix. For example, the sums of the diagonals of the matrix $$\left(\begin{array}{rrrr} 0 & 1 & 0 & 0\\ 1 & -1 & 1 & 0\\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)$$ are $(0,0,2,0,2,0,0)$, so the statistic is $2$.