searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000898
St000898: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1,0],[0,1]]
=> 1
[[0,1],[1,0]]
=> 2
[[1,0,0],[0,1,0],[0,0,1]]
=> 2
[[0,1,0],[1,0,0],[0,0,1]]
=> 3
[[1,0,0],[0,0,1],[0,1,0]]
=> 1
[[0,1,0],[1,-1,1],[0,1,0]]
=> 1
[[0,0,1],[1,0,0],[0,1,0]]
=> 2
[[0,1,0],[0,0,1],[1,0,0]]
=> 2
[[0,0,1],[0,1,0],[1,0,0]]
=> 3
[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 4
[[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 3
[[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[1,0,-1,1],[0,0,1,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> 2
[[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 3
[[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 3
[[0,0,1,0],[0,1,-1,1],[1,0,0,0],[0,0,1,0]]
=> 3
[[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 4
[[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 1
[[0,1,0,0],[1,-1,1,0],[0,0,0,1],[0,1,0,0]]
=> 1
[[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 2
[[0,1,0,0],[0,0,1,0],[1,-1,0,1],[0,1,0,0]]
=> 2
[[0,0,1,0],[0,1,0,0],[1,-1,0,1],[0,1,0,0]]
=> 3
[[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[[0,0,1,0],[1,0,-1,1],[0,0,1,0],[0,1,0,0]]
=> 1
[[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 2
[[0,1,0,0],[0,0,0,1],[1,-1,1,0],[0,1,0,0]]
=> 1
[[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 1
[[0,0,0,1],[0,1,0,0],[1,-1,1,0],[0,1,0,0]]
=> 2
[[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 2
[[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 3
[[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 3
[[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 4
[[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 2
[[0,0,1,0],[0,1,-1,1],[0,0,1,0],[1,0,0,0]]
=> 2
[[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 3
[[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 3
Description
The number of maximal entries in the last diagonal of the monotone triangle.
Consider the alternating sign matrix
$$
\left(\begin{array}{rrrrr}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right).
$$
The corresponding monotone triangle is
$$
\begin{array}{ccccccccc}
5 & & 4 & & 3 & & 2 & & 1 \\
& 5 & & 4 & & 3 & & 1 & \\
& & 5 & & 3 & & 1 & & \\
& & & 5 & & 3 & & & \\
& & & & 4 & & & &
\end{array}
$$
The first entry $1$ in the last diagonal is maximal, because rows are strictly decreasing and its left neighbour is $2$. Also, the entry $3$ in the last diagonal is maximal, because diagonals from north-west to south-east are weakly decreasing, and its north-west neighbour is also $3$. All other entries in the last diagonal are non-maximal, thus the statistic on this matrix is $2$.
Conjecturally, this statistic is equidistributed with [[St000066]].
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!