Your data matches 7 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00015: Binary trees to ordered tree: right child = right brotherOrdered trees
St000700: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [[],[]]
=> 1
[[[]]]
=> [[.,.],.]
=> [[[]]]
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[],[],[]]
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [[[],[]]]
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [[[[]]]]
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[[]]]]]
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[],[],[],[]]
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[],[],[[]]]
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[],[[],[]]]
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[],[[]],[]]
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[],[[[]]]]
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[],[]],[]]
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[],[],[]]]
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[],[[]]]]
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[],[]]]]
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[]],[[]],[]]
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[]]]]]
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[],[]]]]
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[]]]]]
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[]],[]]]
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[]]]]]
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> 1
Description
The protection number of an ordered tree. This is the minimal distance from the root to a leaf.
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00065: Permutations permutation posetPosets
St000906: Posets ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(1,4),(2,4),(4,3)],5)
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(3,4)],5)
=> 1
Description
The length of the shortest maximal chain in a poset.
Matching statistic: St001038
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[[[]]]
=> [[.,.],.]
=> [1,1,0,0]
=> [1,0,1,0]
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St001829
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001829: Graphs ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[[]]],[],[]]
=> [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[[]],[],[]],[]]
=> [.,[[[.,[.,[.,.]]],.],[.,.]]]
=> [7,4,3,2,5,6,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]],[],[]],[],[]]
=> [[[.,[.,[.,.]]],.],[.,[.,.]]]
=> [7,6,3,2,1,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]],[],[]],[[]]]
=> [[[.,[.,[.,.]]],.],[[.,.],.]]
=> [6,7,3,2,1,4,5] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[[[],[[[]]],[],[]]]
=> [[.,.],[[[.,[.,[.,.]]],.],.]]
=> [5,4,3,6,7,1,2] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
Description
The common independence number of a graph. The common independence number of a graph $G$ is the greatest integer $r$ such that every vertex of $G$ belongs to some independent set $X$ of vertices of cardinality at least $r$.
Matching statistic: St001322
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001322: Graphs ⟶ ℤResult quality: 88% values known / values provided: 88%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[],[],[[]]]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[],[[]],[]]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[],[[],[]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [7,5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[]],[],[]]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[],[]],[]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [7,5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[],[],[]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [7,6,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[],[[]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [6,7,4,5,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[]],[],[],[]]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[]],[[],[]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [7,5,6,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[]],[],[]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [7,6,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[]],[[]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [6,7,4,3,5,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[],[]],[]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [7,5,4,3,6,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[],[],[]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [7,6,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[],[[]]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [6,7,5,3,4,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[[]],[]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [6,5,7,3,4,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[],[],[],[]]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => ([(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[],[[],[]]]
=> [.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[[],[]],[]]
=> [.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,2,3,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[[],[],[]]]
=> [.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[],[],[]]
=> [.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [7,6,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[],[[]]]
=> [.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [6,7,5,3,2,4,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[[]],[]]
=> [.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [6,5,7,3,2,4,1] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[[],[]]]
=> [.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [7,5,6,3,2,4,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[]],[],[]]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [7,6,4,3,2,5,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[]],[[]]]
=> [.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [6,7,4,3,2,5,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[],[]],[]]
=> [.,[[.,[.,[.,[.,.]]]],[.,.]]]
=> [7,5,4,3,2,6,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[],[],[]]]
=> [.,[[.,.],[.,[.,[.,[.,.]]]]]]
=> [7,6,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[],[[]]]]
=> [.,[[.,.],[.,[.,[[.,.],.]]]]]
=> [6,7,5,4,2,3,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[[]],[]]]
=> [.,[[.,.],[.,[[.,[.,.]],.]]]]
=> [6,5,7,4,2,3,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[[]],[],[]]]
=> [.,[[.,.],[[.,[.,[.,.]]],.]]]
=> [6,5,4,7,2,3,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[],[[],[]]]
=> [[.,.],[.,[.,[[.,.],[.,.]]]]]
=> [7,5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[[],[]],[]]
=> [[.,.],[.,[[.,[.,.]],[.,.]]]]
=> [7,5,4,6,3,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[[],[],[]]]
=> [[.,.],[.,[[.,.],[.,[.,.]]]]]
=> [7,6,4,5,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[]],[],[]]
=> [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> [7,6,4,3,5,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[]],[[]]]
=> [[.,.],[[.,[.,.]],[[.,.],.]]]
=> [6,7,4,3,5,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[[[]],[[],[],[]],[]]
=> [[.,.],[[.,[.,[.,.]]],[.,.]]]
=> [7,5,4,3,6,1,2] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[],[],[]]]
=> [[.,.],[[.,.],[.,[.,[.,.]]]]]
=> [7,6,5,3,4,1,2] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[[]],[]]]
=> [[.,.],[[.,.],[[.,[.,.]],.]]]
=> [6,5,7,3,4,1,2] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[[[],[]],[],[],[],[]]
=> [[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> [7,6,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[],[],[[]]]
=> [[.,[.,.]],[.,[.,[[.,.],.]]]]
=> [6,7,5,4,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[],[[]],[]]
=> [[.,[.,.]],[.,[[.,[.,.]],.]]]
=> [6,5,7,4,2,1,3] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[],[[],[]]]
=> [[.,[.,.]],[.,[[.,.],[.,.]]]]
=> [7,5,6,4,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[]],[],[]]
=> [[.,[.,.]],[[.,[.,[.,.]]],.]]
=> [6,5,4,7,2,1,3] => ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[[],[]],[[],[]],[]]
=> [[.,[.,.]],[[.,[.,.]],[.,.]]]
=> [7,5,4,6,2,1,3] => ([(0,1),(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[],[],[]]]
=> [[.,[.,.]],[[.,.],[.,[.,.]]]]
=> [7,6,4,5,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[],[[]]]]
=> [[.,[.,.]],[[.,.],[[.,.],.]]]
=> [6,7,4,5,2,1,3] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ? = 2
[[[],[],[]],[],[],[]]
=> [[.,[.,[.,.]]],[.,[.,[.,.]]]]
=> [7,6,5,3,2,1,4] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[],[]],[],[[]]]
=> [[.,[.,[.,.]]],[.,[[.,.],.]]]
=> [6,7,5,3,2,1,4] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 1
[[[],[],[]],[[]],[]]
=> [[.,[.,[.,.]]],[[.,[.,.]],.]]
=> [6,5,7,3,2,1,4] => ([(0,1),(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
Description
The size of a minimal independent dominating set in a graph.
Mp00139: Ordered trees Zeilberger's Strahler bijectionBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001481: Dyck paths ⟶ ℤResult quality: 41% values known / values provided: 41%distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [1,0,1,0]
=> 1
[[[]]]
=> [[.,.],.]
=> [1,1,0,0]
=> 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> 3
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[[],[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[[],[],[],[],[],[[]]]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[[],[],[],[],[[]],[]]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 1
[[],[],[],[],[[],[]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[[],[],[],[],[[[]]]]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[[],[],[],[[]],[],[]]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
[[],[],[],[[],[]],[]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 1
[[],[],[],[[[]]],[]]
=> [.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 1
[[],[],[],[[],[],[]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 1
[[],[],[],[[],[[]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[[],[],[],[[[]],[]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[[],[],[],[[[[]]]]]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[[],[],[[]],[],[],[]]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 1
[[],[],[[]],[],[[]]]
=> [.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 1
[[],[],[[]],[[]],[]]
=> [.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 1
[[],[],[[]],[[],[]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 1
[[],[],[[],[]],[],[]]
=> [.,[.,[[.,[.,.]],[.,[.,.]]]]]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 1
[[],[],[[[]]],[],[]]
=> [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 1
[[],[],[[],[]],[[]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 1
[[],[],[[],[],[]],[]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[[],[],[[[]],[]],[]]
=> [.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 1
[[],[],[[[],[]]],[]]
=> [.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[[],[],[[[[]]]],[]]
=> [.,[.,[[[[.,[.,.]],.],.],.]]]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 1
[[],[],[[],[],[],[]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[],[],[[],[],[[]]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[[],[],[[],[[]],[]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[[],[],[[],[[],[]]]]
=> [.,[.,[[.,[[.,.],[.,.]]],.]]]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 1
[[],[],[[[]],[],[]]]
=> [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[[],[],[[[[]]],[]]]
=> [.,[.,[[[[.,.],.],.],[.,.]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 1
[[],[],[[[],[],[]]]]
=> [.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 1
[[],[[]],[],[],[],[]]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[[],[[]],[],[],[[]]]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> ? = 1
[[],[[]],[],[[]],[]]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 1
[[],[[]],[],[[],[]]]
=> [.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[[],[[]],[],[[[]]]]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> ? = 1
[[],[[]],[[]],[],[]]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 1
[[],[[]],[[],[]],[]]
=> [.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> ? = 1
[[],[[]],[[[]]],[]]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> ? = 1
[[],[[]],[[],[],[]]]
=> [.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[[],[[]],[[[[]]]]]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 1
[[],[[],[]],[],[],[]]
=> [.,[[.,[.,.]],[.,[.,[.,.]]]]]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 1
[[],[[[]]],[],[],[]]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1
[[],[[],[]],[],[[]]]
=> [.,[[.,[.,.]],[.,[[.,.],.]]]]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> ? = 1
[[],[[[]]],[],[[]]]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 1
[[],[[],[]],[[]],[]]
=> [.,[[.,[.,.]],[[.,[.,.]],.]]]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> ? = 1
[[],[[[]]],[[]],[]]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> ? = 1
[[],[[],[]],[[],[]]]
=> [.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 1
[[],[[],[]],[[[]]]]
=> [.,[[.,[.,.]],[[[.,.],.],.]]]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> ? = 1
[[],[[],[],[]],[],[]]
=> [.,[[.,[.,[.,.]]],[.,[.,.]]]]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 1
[[],[[[]],[]],[],[]]
=> [.,[[[.,[.,.]],.],[.,[.,.]]]]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 1
Description
The minimal height of a peak of a Dyck path.
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00160: Permutations graph of inversionsGraphs
St000260: Graphs ⟶ ℤResult quality: 17% values known / values provided: 32%distinct values known / distinct values provided: 17%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([(0,1)],2)
=> 1
[[[]]]
=> [[.,.],.]
=> [1,2] => ([],2)
=> ? = 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => ([(1,2)],3)
=> ? = 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(1,2)],3)
=> ? = 1
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([],3)
=> ? = 3
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(2,3)],4)
=> ? = 3
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(2,3)],4)
=> ? = 1
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(2,3)],4)
=> ? = 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([],4)
=> ? = 4
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ? = 2
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 3
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ? = 1
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 1
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ? = 2
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => ([(3,4)],5)
=> ? = 4
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[],[],[[]]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[],[[]],[]]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[],[[],[]]]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[],[[[]]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ? = 2
[[[[]],[],[]]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[[]],[[]]]]
=> [[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ? = 2
[[[[],[]],[]]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ? = 1
[[[[[]]],[]]]
=> [[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => ([(3,4)],5)
=> ? = 1
[[[[],[],[]]]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ? = 2
[[[[],[[]]]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ? = 3
[[[[[]],[]]]]
=> [[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => ([(3,4)],5)
=> ? = 2
[[[[[],[]]]]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(3,4)],5)
=> ? = 3
[[[[[[]]]]]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => ([],5)
=> ? = 5
[[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[[]]]
=> [.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]],[]]
=> [.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[],[]]]
=> [.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[[]]]]
=> [.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[]],[],[]]
=> [.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[]],[[]]]
=> [.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[]],[]]
=> [.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]]],[]]
=> [.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[],[]]]
=> [.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[[]]]]
=> [.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]],[]]]
=> [.,[.,[[[.,.],[.,.]],.]]]
=> [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[],[]]]]
=> [.,[.,[[[.,[.,.]],.],.]]]
=> [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[[]]]]]
=> [.,[.,[[[[.,.],.],.],.]]]
=> [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[],[],[]]
=> [.,[[.,.],[.,[.,[.,.]]]]]
=> [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[],[[]]]
=> [.,[[.,.],[.,[[.,.],.]]]]
=> [2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[[]],[]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> [2,4,6,5,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[[],[]]]
=> [.,[[.,.],[[.,[.,.]],.]]]
=> [2,5,4,6,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[[[]]]]
=> [.,[[.,.],[[[.,.],.],.]]]
=> [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[],[]]
=> [.,[[.,[.,.]],[.,[.,.]]]]
=> [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]]],[],[]]
=> [.,[[[.,.],.],[.,[.,.]]]]
=> [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[[]]]
=> [.,[[.,[.,.]],[[.,.],.]]]
=> [3,2,5,6,4,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]]],[[]]]
=> [.,[[[.,.],.],[[.,.],.]]]
=> [2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[],[]],[]]
=> [.,[[.,[.,[.,.]]],[.,.]]]
=> [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[[]]],[]]
=> [.,[[.,[[.,.],.]],[.,.]]]
=> [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]],[]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[],[[[],[]]],[]]
=> [.,[[[.,[.,.]],.],[.,.]]]
=> [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1
[[],[[[[]]]],[]]
=> [.,[[[[.,.],.],.],[.,.]]]
=> [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[],[],[],[]]
=> [[.,.],[.,[.,[.,[.,.]]]]]
=> [1,6,5,4,3,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[],[[]]]
=> [[.,.],[.,[.,[[.,.],.]]]]
=> [1,5,6,4,3,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[[]],[]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> [1,4,6,5,3,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[],[[],[]]]
=> [[.,.],[.,[[.,[.,.]],.]]]
=> [1,5,4,6,3,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[]],[],[[[]]]]
=> [[.,.],[.,[[[.,.],.],.]]]
=> [1,4,5,6,3,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[]],[],[]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> [1,3,6,5,4,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[]],[[]]]
=> [[.,.],[[.,.],[[.,.],.]]]
=> [1,3,5,6,4,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[],[]],[]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> [1,4,3,6,5,2] => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ? = 1
[[[]],[[[]]],[]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> [1,3,4,6,5,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.