searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000929
Mp00297: Parking functions —ordered tree⟶ Ordered trees
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,1] => [[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1]
=> 0
[1,1,2] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,1,1] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,3] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[3,1,1] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,2,2] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[2,2,1] => [[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> 1
[1,1,1,1] => [[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 0
[1,1,1,2] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,2,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,2,1,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,1,1,1] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,1,3] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,3,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,3,1,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[3,1,1,1] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,1,4] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,4,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,4,1,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[4,1,1,1] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,2,2] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,2,1,2] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,2,2,1] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[2,1,1,2] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,1,2,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[2,2,1,1] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,2,3] => [[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 0
[1,1,3,2] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,2,3,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[2,1,1,3] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,3,1,1] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[3,1,1,2] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[3,2,1,1] => [[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 0
[1,1,2,4] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,4,2] => [[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 0
[1,4,2,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[2,1,1,4] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[2,4,1,1] => [[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 0
[4,1,1,2] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[4,2,1,1] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[1,1,3,3] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,3,1,3] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,3,3,1] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[3,1,1,3] => [[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> 0
[3,1,3,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[3,3,1,1] => [[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 0
[1,1,3,4] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,1,4,3] => [[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 1
[1,3,4,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
[1,4,3,1] => [[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 1
Description
The constant term of the character polynomial of an integer partition.
The definition of the character polynomial can be found in [1]. Indeed, this constant term is 0 for partitions λ≠1n and 1 for λ=1n.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00297: Parking functions —ordered tree⟶ Ordered trees
Mp00046: Ordered trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 50%
Mp00046: Ordered trees —to graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 50%
Values
[1,1,1] => [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,2] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,1,1] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,1,3] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[3,1,1] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,2,2] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[2,2,1] => [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 2
[1,1,1,1] => [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,2] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,2,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,2,1,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[2,1,1,1] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,1,3] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,3,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,3,1,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[3,1,1,1] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,1,4] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,4,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,4,1,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[4,1,1,1] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,2,2] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,2,1,2] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,2,2,1] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[2,1,1,2] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[2,1,2,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,2,1,1] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,2,3] => [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,3,2] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,2,3,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,1,1,3] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[2,3,1,1] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[3,1,1,2] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,2,1,1] => [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,2,4] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,1,4,2] => [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,4,2,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[2,1,1,4] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[2,4,1,1] => [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[4,1,1,2] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[4,2,1,1] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[1,1,3,3] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,3,1,3] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,3,3,1] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,1,1,3] => [[[]],[[]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 2
[3,1,3,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[3,3,1,1] => [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,1,3,4] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,1,4,3] => [[],[[[]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 1 + 2
[1,3,4,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[1,4,3,1] => [[[],[[]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 1 + 2
[3,1,1,4] => [[],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 2
[1,2,3,4] => [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,3] => [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,4,2] => [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,3,2,1] => [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[1,1,1,4,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,4,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,1,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,1,2,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,2,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,1,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,1,3,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,3,5] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,1,5,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,1,5,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,1,3,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,1,1,5] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,5,1,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,1,1,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,3,1,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,4,4,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,4,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[4,1,1,1,4] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[2,1,2,1,2] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,2,2,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,2,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,2,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,2,3,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,2,1,3] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,2,3,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,2,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,1,2,3] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,2,1,4,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,1,5] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,3,5,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,3,2,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,3,2,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,2,4,5,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,5,4,2,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,3,1,3] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,3,3,5] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,1,5,3,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,5,3,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,1,5,1,3] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,1,1,5] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[3,3,5,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,1,1,3,3] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[5,3,3,1,1] => [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,3,4,5,1] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
[1,4,1,3,5] => [[[],[[],[]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000422
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00297: Parking functions —ordered tree⟶ Ordered trees
Mp00049: Ordered trees —to binary tree: left brother = left child⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 50%
Mp00049: Ordered trees —to binary tree: left brother = left child⟶ Binary trees
Mp00011: Binary trees —to graph⟶ Graphs
St000422: Graphs ⟶ ℤResult quality: 6% ●values known / values provided: 6%●distinct values known / distinct values provided: 50%
Values
[1,1,1] => [[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 6
[1,1,2] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[2,1,1] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[1,1,3] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[3,1,1] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[1,2,2] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[2,2,1] => [[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 1 + 6
[1,1,1,1] => [[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,1,2] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,2,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,2,1,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[2,1,1,1] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,1,3] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,3,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,3,1,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[3,1,1,1] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,1,4] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,4,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,4,1,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[4,1,1,1] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,2,2] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,2,1,2] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[1,2,2,1] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[2,1,1,2] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[2,1,2,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[2,2,1,1] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,2,3] => [[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,3,2] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,2,3,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[2,1,1,3] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[2,3,1,1] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[3,1,1,2] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[3,2,1,1] => [[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,2,4] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,1,4,2] => [[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,4,2,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[2,1,1,4] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[2,4,1,1] => [[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[4,1,1,2] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[4,2,1,1] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,3,3] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,3,1,3] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[1,3,3,1] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[3,1,1,3] => [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[3,1,3,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[3,3,1,1] => [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[1,1,3,4] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,1,4,3] => [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[1,3,4,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[1,4,3,1] => [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 1 + 6
[1,2,1,2,1,3] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,2,1,4] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,2,1,5] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,2,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,2,1,6] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,1,3,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,3,1,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,3,2,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,1,6,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,6,1,2,3,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,4,1,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,4,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,5,1,2,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,2,1,4,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,1,5,1,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,1,5,2,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,3,1,4] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,3,1,5] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,3,5,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,5,1,3,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,6,1,3,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,4,1,3] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,5,1,4,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,3,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,1,4,6,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,6,1,4,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,3,6,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,3,5,1,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,1,5,1,3] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,1,5,3,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,6,3,1,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,4,5,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,5,1,4,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,4,1,4,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,1,4,1,6] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,4,5,1,5,1] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,5,1,6,4,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,6,4,1,5,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[2,1,2,1,3,2] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[2,1,3,2,1,2] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[2,3,1,2,1,2] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[2,5,1,2,1,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,1,3,2,3] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,2,1,3] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[2,3,1,3,1,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[3,2,1,2,1,3] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,1,2,4] => [[[],[[]],[[]]]]
=> [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,1,4,2] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,3,2,1,4] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[1,2,4,2,3,1] => [[[],[[],[[]]]]]
=> [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
Description
The energy of a graph, if it is integral.
The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3].
The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph Kn equals 2n−2. For this reason, we do not define the energy of the empty graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!