searching the database
Your data matches 52 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001066
(load all 31 compositions to match this statistic)
(load all 31 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001066: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
Description
The number of simple reflexive modules in the corresponding Nakayama algebra.
Matching statistic: St001483
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00030: Dyck paths —zeta map⟶ Dyck paths
St001483: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001483: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
Description
The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module.
Matching statistic: St000118
(load all 17 compositions to match this statistic)
(load all 17 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00029: Dyck paths —to binary tree: left tree, up step, right tree, down step⟶ Binary trees
St000118: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [.,.]
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [[.,.],.]
=> 0
[1,1,0,0]
=> [1,1,0,0]
=> [.,[.,.]]
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[[.,.],.],.]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[.,[.,.]],.]
=> 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[.,.],[.,.]]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [.,[[.,.],.]]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [.,[.,[.,.]]]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[[[.,.],.],.],.]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[[.,[.,.]],.],.]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[[.,.],[.,.]],.]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[.,[[.,.],.]],.]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[.,[.,[.,.]]],.]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[[.,.],.],[.,.]]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[.,[.,.]],[.,.]]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[.,.],[[.,.],.]]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [.,[[[.,.],.],.]]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [.,[[.,[.,.]],.]]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[.,.],[.,[.,.]]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [.,[[.,.],[.,.]]]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [.,[.,[[.,.],.]]]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [.,[.,[.,[.,.]]]]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[[[[.,.],.],.],.],.]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[[[.,[.,.]],.],.],.]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[[[.,.],[.,.]],.],.]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[[.,[[.,.],.]],.],.]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[.,[.,[.,.]]],.],.]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[[[.,.],.],[.,.]],.]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[.,[.,.]],[.,.]],.]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[[.,.],[[.,.],.]],.]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[.,[[[.,.],.],.]],.]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[.,[[.,[.,.]],.]],.]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[[.,.],[.,[.,.]]],.]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[.,[[.,.],[.,.]]],.]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[.,[.,[[.,.],.]]],.]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[.,[.,[.,[.,.]]]],.]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[[[.,.],.],.],[.,.]]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[[.,[.,.]],.],[.,.]]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[[.,.],[.,.]],[.,.]]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[.,[[.,.],.]],[.,.]]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[.,[.,[.,.]]],[.,.]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[[.,.],.],[[.,.],.]]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[.,[.,.]],[[.,.],.]]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[.,.],[[[.,.],.],.]]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [.,[[[[.,.],.],.],.]]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [.,[[[.,[.,.]],.],.]]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[.,.],[[.,[.,.]],.]]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [.,[[[.,.],[.,.]],.]]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [.,[[.,[[.,.],.]],.]]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [.,[[.,[.,[.,.]]],.]]
=> 1
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[.,.]]]}}} in a binary tree.
[[oeis:A001006]] counts binary trees avoiding this pattern.
Matching statistic: St000931
(load all 34 compositions to match this statistic)
(load all 34 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00142: Dyck paths —promotion⟶ Dyck paths
St000931: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The number of occurrences of the pattern UUU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St000052
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St000052: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
Description
The number of valleys of a Dyck path not on the x-axis.
That is, the number of valleys of nonminimal height. This corresponds to the number of -1's in an inclusion of Dyck paths into alternating sign matrices.
Matching statistic: St001167
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001167: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
Description
The number of simple modules that appear as the top of an indecomposable non-projective modules that is reflexive in the corresponding Nakayama algebra.
The top of a module is the cokernel of the inclusion of the radical of the module into the module.
For Nakayama algebras with at most 8 simple modules, the statistic also coincides with the number of simple modules with projective dimension at least 3 in the corresponding Nakayama algebra.
Matching statistic: St001172
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00072: Permutations —binary search tree: left to right⟶ Binary trees
Mp00012: Binary trees —to Dyck path: up step, left tree, down step, right tree⟶ Dyck paths
St001172: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [.,[.,[[.,[.,.]],.]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [.,[[.,[.,.]],[.,.]]]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [.,[[.,[.,[.,.]]],.]]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
Description
The number of 1-rises at odd height of a Dyck path.
Matching statistic: St001253
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001253: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 0
[1,1,0,0]
=> [2] => [1,1] => [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [3] => [1,1,1] => [1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => [1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
Description
The number of non-projective indecomposable reflexive modules in the corresponding Nakayama algebra.
For the first 196 values the statistic coincides also with the number of fixed points of $\tau \Omega^2$ composed with its inverse, see theorem 5.8. in the reference for more details.
The number of Dyck paths of length n where the statistics returns zero seems to be 2^(n-1).
Matching statistic: St000366
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000366: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,2,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,2,1,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,2,1,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,3,2,1,6,5,7] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,3,2,1,6,5,7] => ? = 2
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,0,1,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,2,1,4,5,7,6] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
Description
The number of double descents of a permutation.
A double descent of a permutation $\pi$ is a position $i$ such that $\pi(i) > \pi(i+1) > \pi(i+2)$.
Matching statistic: St000371
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Mp00137: Dyck paths —to symmetric ASM⟶ Alternating sign matrices
Mp00002: Alternating sign matrices —to left key permutation⟶ Permutations
St000371: Permutations ⟶ ℤResult quality: 78% ●values known / values provided: 78%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [[1]]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 0
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [3,2,1,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [4,3,2,1] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,2,1,4,5] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> [1,4,3,2,5] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1]]
=> [4,3,2,1,5] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> [3,2,1,5,4] => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,5,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,2,1,5,4,6,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,3,5,4,6,7] => ? = 0
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [3,2,1,5,4,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [2,1,5,4,3,6,7] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,0,0,1]]
=> [1,5,4,3,2,6,7] => ? = 2
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,3,2,1,6,5,7] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,4,6,5,7] => ? = 0
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,1,0,0],[0,0,0,1,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,4,6,5,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [2,1,4,3,6,5,7] => ? = 0
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,-1,1,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1]]
=> [4,3,2,1,6,5,7] => ? = 2
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,-1,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,1,0,0],[1,0,-1,1,-1,1,0],[0,0,1,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,3,6,5,4,7] => ? = 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,-1,1,0],[1,0,0,-1,1,0,0],[0,0,0,1,0,0,0],[0,0,0,0,0,0,1]]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,-1,0,1,0],[1,0,-1,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,-1,1,0],[0,1,0,-1,1,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,0,0,1]]
=> [2,1,6,5,4,3,7] => ? = 2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[1,0,0,0,0,0,0],[0,0,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [[0,1,0,0,0,0,0],[1,-1,0,0,0,1,0],[0,0,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [[0,0,1,0,0,0,0],[0,1,-1,0,0,1,0],[1,-1,0,0,1,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[0,0,0,1,0,0,0],[0,0,1,-1,0,1,0],[0,1,-1,0,1,0,0],[1,-1,0,1,0,0,0],[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[0,0,0,0,1,0,0],[0,0,0,1,-1,1,0],[0,0,1,-1,1,0,0],[0,1,-1,1,0,0,0],[1,-1,1,0,0,0,0],[0,1,0,0,0,0,0],[0,0,0,0,0,0,1]]
=> [1,6,5,4,3,2,7] => ? = 3
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,1,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,3,4,5,7,6] => ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [3,2,1,4,5,7,6] => ? = 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0,0,0],[1,0,0,0,0,0,0],[0,0,0,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [[0,0,1,0,0,0,0],[0,1,0,0,0,0,0],[1,0,-1,1,0,0,0],[0,0,1,0,0,0,0],[0,0,0,0,1,0,0],[0,0,0,0,0,0,1],[0,0,0,0,0,1,0]]
=> [2,1,4,3,5,7,6] => ? = 0
Description
The number of mid points of decreasing subsequences of length 3 in a permutation.
For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the number of indices $j$ such that there exist indices $i,k$ with $i < j < k$ and $\pi(i) > \pi(j) > \pi(k)$. In other words, this is the number of indices that are neither left-to-right maxima nor right-to-left minima.
This statistic can also be expressed as the number of occurrences of the mesh pattern ([3,2,1], {(0,2),(0,3),(2,0),(3,0)}): the shading fixes the first and the last element of the decreasing subsequence.
See also [[St000119]].
The following 42 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000358The number of occurrences of the pattern 31-2. St000365The number of double ascents of a permutation. St001727The number of invisible inversions of a permutation. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St000732The number of double deficiencies of a permutation. St000836The number of descents of distance 2 of a permutation. St000731The number of double exceedences of a permutation. St000932The number of occurrences of the pattern UDU in a Dyck path. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length $3$. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St000039The number of crossings of a permutation. St000317The cycle descent number of a permutation. St000355The number of occurrences of the pattern 21-3. St001021Sum of the differences between projective and codominant dimension of the non-projective indecomposable injective modules in the Nakayama algebra corresponding to the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St001089Number of indecomposable projective non-injective modules minus the number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St001229The vector space dimension of the first extension group between the Jacobson radical J and J^2. St001330The hat guessing number of a graph. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St000444The length of the maximal rise of a Dyck path. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000181The number of connected components of the Hasse diagram for the poset. St001890The maximum magnitude of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St000982The length of the longest constant subword. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001948The number of augmented double ascents of a permutation. St000392The length of the longest run of ones in a binary word.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!