Your data matches 32 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000445: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 0
Description
The number of rises of length 1 of a Dyck path.
Mp00030: Dyck paths zeta mapDyck paths
St001126: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
Description
Number of simple module that are 1-regular in the corresponding Nakayama algebra.
Matching statistic: St000475
Mp00102: Dyck paths rise compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St000475: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 1
[1,0,1,0]
=> [1,1] => [1,1]
=> 2
[1,1,0,0]
=> [2] => [2]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [2,1]
=> 1
[1,1,1,0,0,0]
=> [3] => [3]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [2,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [2,2] => [2,2]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [3,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [3,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,1,1,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [2,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,2,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [3,1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [3,1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [2,1,1,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [2,2,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [3,2]
=> 0
Description
The number of parts equal to 1 in a partition.
Mp00030: Dyck paths zeta mapDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00032: Dyck paths inverse zeta mapDyck paths
St000932: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> 0
Description
The number of occurrences of the pattern UDU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Mp00028: Dyck paths reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000247: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> {{1}}
=> ? = 1
[1,0,1,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 2
[1,1,0,0]
=> [1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2
Description
The number of singleton blocks of a set partition.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000248: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> {{1}}
=> ? = 1
[1,0,1,0]
=> [1,1,0,0]
=> {{1,2}}
=> 2
[1,1,0,0]
=> [1,0,1,0]
=> {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> {{1,2,3,4,5}}
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> {{1,2,3,5},{4}}
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> {{1,2,5},{3,4}}
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> {{1,2,4,5},{3}}
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> {{1,2,5},{3},{4}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> {{1,5},{2,3,4}}
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> {{1,5},{2,4},{3}}
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> {{1,4,5},{2,3}}
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> {{1,5},{2,3},{4}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 2
Description
The number of anti-singletons of a set partition. An anti-singleton of a set partition $S$ is an index $i$ such that $i$ and $i+1$ (considered cyclically) are both in the same block of $S$. For noncrossing set partitions, this is also the number of singletons of the image of $S$ under the Kreweras complement.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000674: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> ? = 1
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 2
Description
The number of hills of a Dyck path. A hill is a peak with up step starting and down step ending at height zero.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000986: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 2
[1,1,0,0]
=> [2] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,3] => ([(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,0,1,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,4] => ([(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,1,3] => [1,1,3,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Matching statistic: St001484
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00142: Dyck paths promotionDyck paths
Mp00027: Dyck paths to partitionInteger partitions
St001484: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,1,0,0]
=> [1,1]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,2,1]
=> ? = 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [5,4,4,2,2,1]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,2,1]
=> ? = 4
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [5,5,3,2,2,1]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [6,4,3,2,2,1]
=> ? = 4
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [5,4,4,3,1,1]
=> ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [6,4,3,3,1,1]
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [6,5,4,2,1,1]
=> ? = 4
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [5,5,4,2,1,1]
=> ? = 2
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [6,4,4,2,1,1]
=> ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [6,5,3,2,1,1]
=> ? = 4
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [6,6,4,4,3,2,1]
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,3,2,1]
=> ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,3,2,1]
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [7,4,4,4,3,2,1]
=> ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [7,6,5,3,3,2,1]
=> ? = 5
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [6,6,5,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [7,5,5,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [6,5,5,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [5,5,5,3,3,2,1]
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,6,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [6,6,4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,5,4,3,3,2,1]
=> ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [5,5,4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [7,4,4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [6,4,4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [5,4,4,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [4,4,4,3,3,2,1]
=> ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [7,6,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [6,6,3,3,3,2,1]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [7,5,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [5,5,3,3,3,2,1]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [5,4,3,3,3,2,1]
=> ? = 4
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [4,4,3,3,3,2,1]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [7,3,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,3,3,3,2,1]
=> ? = 3
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [4,3,3,3,3,2,1]
=> ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [7,6,5,4,2,2,1]
=> ? = 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [6,6,5,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [7,5,5,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [6,5,5,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [5,5,5,4,2,2,1]
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [7,6,4,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [6,6,4,4,2,2,1]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [7,5,4,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [6,5,4,4,2,2,1]
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [5,5,4,4,2,2,1]
=> ? = 1
Description
The number of singletons of an integer partition. A singleton in an integer partition is a part that appear precisely once.
Mp00030: Dyck paths zeta mapDyck paths
Mp00229: Dyck paths Delest-ViennotDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St000022: Permutations ⟶ ℤResult quality: 56% values known / values provided: 56%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 1
[1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 2
[1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 3
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 2
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 3
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [4,2,3,1,5,6,7] => ? = 5
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,4,3,2,5,6,7] => ? = 5
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => ? = 5
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [2,4,3,1,5,6,7] => ? = 4
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0,1,0]
=> [3,2,4,1,5,6,7] => ? = 4
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => ? = 4
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0]
=> [5,2,3,4,1,6,7] => ? = 5
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,3,2,4,1,6,7] => ? = 3
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 3
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [2,5,4,3,1,6,7] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,5,3,4,2,6,7] => ? = 5
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [5,2,4,3,1,6,7] => ? = 3
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,2,5,4,3,6,7] => ? = 5
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,3,5,4,6,7] => ? = 5
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => ? = 3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [3,2,1,5,4,6,7] => ? = 3
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => ? = 3
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,4,6,7] => ? = 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [2,5,3,4,1,6,7] => ? = 4
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,3,4,2,1,6,7] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,2,5,4,1,6,7] => ? = 4
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [4,2,3,5,1,6,7] => ? = 4
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [4,3,2,5,1,6,7] => ? = 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => ? = 4
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => ? = 4
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => ? = 4
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => ? = 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [2,3,5,4,1,6,7] => ? = 3
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [2,4,3,5,1,6,7] => ? = 3
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [3,2,4,5,1,6,7] => ? = 3
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => ? = 3
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [6,2,3,4,5,1,7] => ? = 5
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1,7] => ? = 3
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,6,4,3,5,1,7] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,2,6,5,4,3,7] => ? = 3
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,6,5,4,3,7] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => ? = 2
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => ? = 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,5,4,1,7] => ? = 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,6,3,4,5,2,7] => ? = 5
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [6,2,4,3,5,1,7] => ? = 3
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => ? = 3
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [2,6,3,5,4,1,7] => ? = 2
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,2,6,4,5,3,7] => ? = 5
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,5,4,1,7] => ? = 3
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,3,6,5,4,7] => ? = 5
Description
The number of fixed points of a permutation.
The following 22 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000215The number of adjacencies of a permutation, zero appended. St000895The number of ones on the main diagonal of an alternating sign matrix. St000502The number of successions of a set partitions. St001189The number of simple modules with dominant and codominant dimension equal to zero in the Nakayama algebra corresponding to the Dyck path. St000221The number of strong fixed points of a permutation. St000241The number of cyclical small excedances. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001017Number of indecomposable injective modules with projective dimension equal to the codominant dimension in the Nakayama algebra corresponding to the Dyck path. St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra. St000894The trace of an alternating sign matrix. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000441The number of successions of a permutation. St000237The number of small exceedances. St000214The number of adjacencies of a permutation. St001461The number of topologically connected components of the chord diagram of a permutation. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St000239The number of small weak excedances. St001061The number of indices that are both descents and recoils of a permutation. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St000731The number of double exceedences of a permutation. St001948The number of augmented double ascents of a permutation.