Processing math: 100%

Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000937
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000937: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[2,1,1,1] => [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[3,1,1] => [[3,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,2,1,1,1] => [[2,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,1,1] => [[3,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[2,1,1,1,1] => [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,2] => [[3,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2,1] => [[3,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[2,2,1,1] => [[3,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[3,1,1,1] => [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[3,1,2] => [[4,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2,1] => [[4,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[4,1,1] => [[4,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[1,1,2,1,1,1] => [[2,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,3,1,1] => [[3,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,2,1,1,1,1] => [[2,2,2,2,2,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,1,1,2] => [[3,2,2,2,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,1,2,1] => [[3,3,2,2,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,2,1,1] => [[3,3,3,2,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[1,3,1,1,1] => [[3,3,3,3,1],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[1,3,1,2] => [[4,3,3,1],[2,2]]
=> [2,2]
=> [2]
=> 2
[1,3,2,1] => [[4,4,3,1],[3,2]]
=> [3,2]
=> [2]
=> 2
[1,4,1,1] => [[4,4,4,1],[3,3]]
=> [3,3]
=> [3]
=> 3
[2,1,1,1,1,1] => [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 3
[2,1,1,1,2] => [[3,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,2,1] => [[3,3,2,2,2],[2,1,1,1]]
=> [2,1,1,1]
=> [1,1,1]
=> 2
[2,1,1,3] => [[4,2,2,2],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,2,1,1] => [[3,3,3,2,2],[2,2,1,1]]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[2,1,2,2] => [[4,3,2,2],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3,1] => [[4,4,2,2],[3,1,1]]
=> [3,1,1]
=> [1,1]
=> 1
[2,2,1,1,1] => [[3,3,3,3,2],[2,2,2,1]]
=> [2,2,2,1]
=> [2,2,1]
=> 3
[2,2,1,2] => [[4,3,3,2],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,2,1] => [[4,4,3,2],[3,2,1]]
=> [3,2,1]
=> [2,1]
=> 1
[2,3,1,1] => [[4,4,4,2],[3,3,1]]
=> [3,3,1]
=> [3,1]
=> 2
[3,1,1,1,1] => [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> [2,2,2]
=> 5
[3,1,1,2] => [[4,3,3,3],[2,2,2]]
=> [2,2,2]
=> [2,2]
=> 2
[3,1,2,1] => [[4,4,3,3],[3,2,2]]
=> [3,2,2]
=> [2,2]
=> 2
[3,1,3] => [[5,3,3],[2,2]]
=> [2,2]
=> [2]
=> 2
[3,2,1,1] => [[4,4,4,3],[3,3,2]]
=> [3,3,2]
=> [3,2]
=> 4
[3,2,2] => [[5,4,3],[3,2]]
=> [3,2]
=> [2]
=> 2
[3,3,1] => [[5,5,3],[4,2]]
=> [4,2]
=> [2]
=> 2
[4,1,1,1] => [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> [3,3]
=> 5
[4,1,2] => [[5,4,4],[3,3]]
=> [3,3]
=> [3]
=> 3
[4,2,1] => [[5,5,4],[4,3]]
=> [4,3]
=> [3]
=> 3
[5,1,1] => [[5,5,5],[4,4]]
=> [4,4]
=> [4]
=> 5
[1,1,1,2,1,1,1] => [[2,2,2,2,1,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2,1,1,1,1] => [[2,2,2,2,2,1,1],[1,1,1,1]]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,1,2,1,1,2] => [[3,2,2,2,1,1],[1,1,1]]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,2,1,2,1] => [[3,3,2,2,1,1],[2,1,1]]
=> [2,1,1]
=> [1,1]
=> 1
[1,1,2,2,1,1] => [[3,3,3,2,1,1],[2,2,1]]
=> [2,2,1]
=> [2,1]
=> 1
[1,1,3,1,2] => [[4,3,3,1,1],[2,2]]
=> [2,2]
=> [2]
=> 2
Description
The number of positive values of the symmetric group character corresponding to the partition. For example, the character values of the irreducible representation S(2,2) are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and 1 on the conjugacy class (2,1,1). Therefore, the statistic on the partition (2,2) is 2.
Matching statistic: St000746
Mp00040: Integer compositions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
St000746: Perfect matchings ⟶ ℤResult quality: 18% values known / values provided: 18%distinct values known / distinct values provided: 20%
Values
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,10),(4,5),(6,7),(8,9)]
=> 2 = 1 + 1
[3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,10),(6,7),(8,9)]
=> 3 = 2 + 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> ? = 1 + 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> 3 = 2 + 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)]
=> ? = 2 + 1
[2,1,1,2] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 2 = 1 + 1
[2,1,2,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 2 = 1 + 1
[2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [(1,10),(2,5),(3,4),(6,7),(8,9)]
=> 2 = 1 + 1
[3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)]
=> 3 = 2 + 1
[3,1,2] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 3 = 2 + 1
[3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,10),(4,7),(5,6),(8,9)]
=> 3 = 2 + 1
[4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)]
=> 4 = 3 + 1
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,1,3,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 1 + 1
[1,2,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 1 + 1
[1,2,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 1 + 1
[1,3,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,3,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[1,3,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[1,4,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 3 + 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,5),(6,7),(8,9),(10,11),(12,13)]
=> ? = 3 + 1
[2,1,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 2 + 1
[2,1,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 2 + 1
[2,1,1,3] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 1 + 1
[2,1,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 2 + 1
[2,1,2,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 2 = 1 + 1
[2,1,3,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 1 + 1
[2,2,1,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)]
=> ? = 3 + 1
[2,2,1,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 2 = 1 + 1
[2,2,2,1] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [(1,10),(2,7),(3,6),(4,5),(8,9)]
=> 2 = 1 + 1
[2,3,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[3,1,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,14),(6,7),(8,9),(10,11),(12,13)]
=> ? = 5 + 1
[3,1,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[3,1,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[3,1,3] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 3 = 2 + 1
[3,2,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)]
=> ? = 4 + 1
[3,2,2] => [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,10),(4,9),(5,8),(6,7)]
=> 3 = 2 + 1
[3,3,1] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [(1,10),(2,7),(3,4),(5,6),(8,9)]
=> 3 = 2 + 1
[4,1,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,14),(8,9),(10,11),(12,13)]
=> ? = 5 + 1
[4,1,2] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 4 = 3 + 1
[4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)]
=> 4 = 3 + 1
[5,1,1] => [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,14),(10,11),(12,13)]
=> ? = 5 + 1
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,16),(4,5),(6,7),(8,9),(10,11),(12,13),(14,15)]
=> ? = 1 + 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,16),(4,5),(6,7),(8,9),(10,11),(12,13),(14,15)]
=> ? = 2 + 1
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,1,3,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,1,3,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,16),(4,5),(6,7),(8,9),(10,11),(12,13),(14,15)]
=> ? = 3 + 1
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,2,1,2,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]
=> ? = 1 + 1
[1,2,1,3,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 1 + 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [(1,14),(2,5),(3,4),(6,7),(8,9),(10,11),(12,13)]
=> ? = 3 + 1
[1,2,2,1,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]
=> ? = 1 + 1
[1,2,2,2,1] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)]
=> ? = 1 + 1
[1,2,3,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,3,1,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,3,1,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 2 + 1
[1,3,1,3] => [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[1,3,2,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [(1,2),(3,14),(4,7),(5,6),(8,9),(10,11),(12,13)]
=> ? = 4 + 1
[1,3,2,2] => [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)]
=> ? = 2 + 1
[1,3,3,1] => [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)]
=> ? = 2 + 1
[1,4,1,1,1] => [4,1,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [(1,2),(3,4),(5,6),(7,16),(8,9),(10,11),(12,13),(14,15)]
=> ? = 5 + 1
[2,2,2,2] => [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,5),(6,7)]
=> 2 = 1 + 1
[3,2,3] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 3 = 2 + 1
[3,3,2] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [(1,10),(2,9),(3,4),(5,8),(6,7)]
=> 3 = 2 + 1
[4,2,2] => [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)]
=> 4 = 3 + 1
Description
The number of pairs with odd minimum in a perfect matching.
Matching statistic: St001553
Mp00040: Integer compositions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00142: Dyck paths promotionDyck paths
St001553: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 13%
Values
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[2,1,1,2] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 2
[3,1,2] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 3
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,3,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,2,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,2,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,3,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,3,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,3,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,4,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 3
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
[2,1,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,1,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,1,1,3] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[2,1,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,1,2,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[2,1,3,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[2,2,1,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 3
[2,2,1,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[2,2,2,1] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[2,3,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[3,1,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[3,1,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[3,1,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[3,1,3] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[3,2,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ? = 4
[3,2,2] => [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2
[3,3,1] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[4,1,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> ? = 5
[4,1,2] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 3
[4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> ? = 3
[5,1,1] => [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> ? = 5
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,1,3,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,1,3,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 2
[1,2,1,2,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,2,1,3,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 3
[1,2,2,1,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,2,2,2,1] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,2,3,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,3,1,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,3,1,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[2,2,2,2] => [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 1
[3,2,3] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[3,3,2] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
Description
The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. The statistic returns zero in case that bimodule is the zero module.
Matching statistic: St000329
Mp00040: Integer compositions to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
Mp00199: Dyck paths prime Dyck pathDyck paths
St000329: Dyck paths ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 13%
Values
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,1,1] => [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,1,2] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,1,2,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,1,1] => [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> 2 = 1 + 1
[3,1,1,1] => [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,1,2] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,1] => [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,1,1] => [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 3 + 1
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,3,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,3,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,3,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,3,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,4,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[2,1,1,1,2] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,1,2,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,1,3] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,1,2,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,1,2,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 1 + 1
[2,1,3,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[2,2,1,1,1] => [2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[2,2,1,2] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 1 + 1
[2,2,2,1] => [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> 2 = 1 + 1
[2,3,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,1,1,1,1] => [3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> ? = 5 + 1
[3,1,1,2] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,1,2,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 2 + 1
[3,1,3] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[3,2,1,1] => [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 4 + 1
[3,2,2] => [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 3 = 2 + 1
[3,3,1] => [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> 3 = 2 + 1
[4,1,1,1] => [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 5 + 1
[4,1,2] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[4,2,1] => [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3 + 1
[5,1,1] => [5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> ? = 5 + 1
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,1,3,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,1,3,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,2,1,2,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,1,3,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> ? = 3 + 1
[1,2,2,1,2] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,2,2,1] => [2,2,2,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1 + 1
[1,2,3,1,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,3,1,1,2] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[1,3,1,2,1] => [3,2,1,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> ? = 2 + 1
[2,2,2,2] => [2,2,2,2]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 2 = 1 + 1
[3,2,3] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 3 = 2 + 1
[3,3,2] => [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> 3 = 2 + 1
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.