Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000975: Ordered trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 2
[[],[],[]]
=> 2
[[],[[]]]
=> 3
[[[]],[]]
=> 3
[[[],[]]]
=> 3
[[[[]]]]
=> 3
[[],[],[],[]]
=> 2
[[],[],[[]]]
=> 3
[[],[[]],[]]
=> 2
[[],[[],[]]]
=> 3
[[],[[[]]]]
=> 4
[[[]],[],[]]
=> 3
[[[]],[[]]]
=> 4
[[[],[]],[]]
=> 3
[[[[]]],[]]
=> 4
[[[],[],[]]]
=> 3
[[[],[[]]]]
=> 4
[[[[]],[]]]
=> 4
[[[[],[]]]]
=> 4
[[[[[]]]]]
=> 4
[[],[],[],[],[]]
=> 2
[[],[],[],[[]]]
=> 3
[[],[],[[]],[]]
=> 2
[[],[],[[],[]]]
=> 3
[[],[],[[[]]]]
=> 4
[[],[[]],[],[]]
=> 2
[[],[[]],[[]]]
=> 3
[[],[[],[]],[]]
=> 2
[[],[[[]]],[]]
=> 2
[[],[[],[],[]]]
=> 3
[[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> 3
[[],[[[],[]]]]
=> 4
[[],[[[[]]]]]
=> 5
[[[]],[],[],[]]
=> 3
[[[]],[],[[]]]
=> 4
[[[]],[[]],[]]
=> 3
[[[]],[[],[]]]
=> 4
[[[]],[[[]]]]
=> 5
[[[],[]],[],[]]
=> 3
[[[[]]],[],[]]
=> 4
[[[],[]],[[]]]
=> 4
[[[[]]],[[]]]
=> 5
[[[],[],[]],[]]
=> 3
[[[],[[]]],[]]
=> 3
[[[[]],[]],[]]
=> 4
[[[[],[]]],[]]
=> 4
[[[[[]]]],[]]
=> 5
Description
The length of the boundary minus the length of the trunk of an ordered tree. This is the size of the set of edges which are either on the left most path or on the right most path from the root.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00064: Permutations reversePermutations
St001004: Permutations ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1] => [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,2] => [2,1] => 2
[[[]]]
=> [.,[.,.]]
=> [2,1] => [1,2] => 2
[[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 2
[[],[[]]]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,3,1] => 3
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 3
[[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 3
[[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 3
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 2
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,4,2,1] => 3
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [4,2,3,1] => 2
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,3,1] => 3
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,3,4,1] => 4
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 3
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,4,1,2] => 4
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 3
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 4
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 3
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,3,4,2] => 4
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 4
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 4
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 4
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [5,4,3,2,1] => 2
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,5,3,2,1] => 3
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [5,3,4,2,1] => 2
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [3,5,4,2,1] => 3
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,4,5,2,1] => 4
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [5,4,2,3,1] => 2
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [4,5,2,3,1] => 3
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [5,2,4,3,1] => 2
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [5,2,3,4,1] => 2
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [2,5,4,3,1] => 3
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,5,3,1] => 4
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [2,5,3,4,1] => 3
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [2,3,5,4,1] => 4
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,3,4,5,1] => 5
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [5,4,3,1,2] => 3
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [4,5,3,1,2] => 4
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [5,3,4,1,2] => 3
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,5,4,1,2] => 4
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,4,5,1,2] => 5
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [5,4,1,3,2] => 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [5,4,1,2,3] => 4
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [4,5,1,3,2] => 4
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,5,1,2,3] => 5
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [5,1,4,3,2] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [5,1,3,4,2] => 3
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [5,1,4,2,3] => 4
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [5,1,2,4,3] => 4
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,1,2,3,4] => 5
[[],[],[],[],[],[[]]]
=> [[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [6,7,5,4,3,2,1] => ? = 3
[[],[],[],[],[[]],[]]
=> [[[[[[.,.],.],.],.],[.,.]],.]
=> [1,2,3,4,6,5,7] => [7,5,6,4,3,2,1] => ? = 2
[[],[],[],[],[[],[]]]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [1,2,3,4,6,7,5] => [5,7,6,4,3,2,1] => ? = 3
[[],[],[],[],[[[]]]]
=> [[[[[.,.],.],.],.],[.,[.,.]]]
=> [1,2,3,4,7,6,5] => [5,6,7,4,3,2,1] => ? = 4
[[],[],[],[[]],[],[]]
=> [[[[[[.,.],.],.],[.,.]],.],.]
=> [1,2,3,5,4,6,7] => [7,6,4,5,3,2,1] => ? = 2
[[],[],[],[[]],[[]]]
=> [[[[[.,.],.],.],[.,.]],[.,.]]
=> [1,2,3,5,4,7,6] => [6,7,4,5,3,2,1] => ? = 3
[[],[],[],[[],[]],[]]
=> [[[[[.,.],.],.],[[.,.],.]],.]
=> [1,2,3,5,6,4,7] => [7,4,6,5,3,2,1] => ? = 2
[[],[],[],[[[]]],[]]
=> [[[[[.,.],.],.],[.,[.,.]]],.]
=> [1,2,3,6,5,4,7] => [7,4,5,6,3,2,1] => ? = 2
[[],[],[],[[],[],[]]]
=> [[[[.,.],.],.],[[[.,.],.],.]]
=> [1,2,3,5,6,7,4] => [4,7,6,5,3,2,1] => ? = 3
[[],[],[],[[],[[]]]]
=> [[[[.,.],.],.],[[.,.],[.,.]]]
=> [1,2,3,5,7,6,4] => [4,6,7,5,3,2,1] => ? = 4
[[],[],[],[[[]],[]]]
=> [[[[.,.],.],.],[[.,[.,.]],.]]
=> [1,2,3,6,5,7,4] => [4,7,5,6,3,2,1] => ? = 3
[[],[],[],[[[],[]]]]
=> [[[[.,.],.],.],[.,[[.,.],.]]]
=> [1,2,3,6,7,5,4] => [4,5,7,6,3,2,1] => ? = 4
[[],[],[],[[[[]]]]]
=> [[[[.,.],.],.],[.,[.,[.,.]]]]
=> [1,2,3,7,6,5,4] => [4,5,6,7,3,2,1] => ? = 5
[[],[],[[]],[],[],[]]
=> [[[[[[.,.],.],[.,.]],.],.],.]
=> [1,2,4,3,5,6,7] => [7,6,5,3,4,2,1] => ? = 2
[[],[],[[]],[],[[]]]
=> [[[[[.,.],.],[.,.]],.],[.,.]]
=> [1,2,4,3,5,7,6] => [6,7,5,3,4,2,1] => ? = 3
[[],[],[[]],[[]],[]]
=> [[[[[.,.],.],[.,.]],[.,.]],.]
=> [1,2,4,3,6,5,7] => [7,5,6,3,4,2,1] => ? = 2
[[],[],[[]],[[],[]]]
=> [[[[.,.],.],[.,.]],[[.,.],.]]
=> [1,2,4,3,6,7,5] => [5,7,6,3,4,2,1] => ? = 3
[[],[],[[]],[[[]]]]
=> [[[[.,.],.],[.,.]],[.,[.,.]]]
=> [1,2,4,3,7,6,5] => [5,6,7,3,4,2,1] => ? = 4
[[],[],[[],[]],[],[]]
=> [[[[[.,.],.],[[.,.],.]],.],.]
=> [1,2,4,5,3,6,7] => [7,6,3,5,4,2,1] => ? = 2
[[],[],[[[]]],[],[]]
=> [[[[[.,.],.],[.,[.,.]]],.],.]
=> [1,2,5,4,3,6,7] => [7,6,3,4,5,2,1] => ? = 2
[[],[],[[],[]],[[]]]
=> [[[[.,.],.],[[.,.],.]],[.,.]]
=> [1,2,4,5,3,7,6] => [6,7,3,5,4,2,1] => ? = 3
[[],[],[[[]]],[[]]]
=> [[[[.,.],.],[.,[.,.]]],[.,.]]
=> [1,2,5,4,3,7,6] => [6,7,3,4,5,2,1] => ? = 3
[[],[],[[],[],[]],[]]
=> [[[[.,.],.],[[[.,.],.],.]],.]
=> [1,2,4,5,6,3,7] => [7,3,6,5,4,2,1] => ? = 2
[[],[],[[],[[]]],[]]
=> [[[[.,.],.],[[.,.],[.,.]]],.]
=> [1,2,4,6,5,3,7] => [7,3,5,6,4,2,1] => ? = 2
[[],[],[[[]],[]],[]]
=> [[[[.,.],.],[[.,[.,.]],.]],.]
=> [1,2,5,4,6,3,7] => [7,3,6,4,5,2,1] => ? = 2
[[],[],[[[],[]]],[]]
=> [[[[.,.],.],[.,[[.,.],.]]],.]
=> [1,2,5,6,4,3,7] => [7,3,4,6,5,2,1] => ? = 2
[[],[],[[[[]]]],[]]
=> [[[[.,.],.],[.,[.,[.,.]]]],.]
=> [1,2,6,5,4,3,7] => [7,3,4,5,6,2,1] => ? = 2
[[],[],[[],[],[],[]]]
=> [[[.,.],.],[[[[.,.],.],.],.]]
=> [1,2,4,5,6,7,3] => [3,7,6,5,4,2,1] => ? = 3
[[],[],[[],[],[[]]]]
=> [[[.,.],.],[[[.,.],.],[.,.]]]
=> [1,2,4,5,7,6,3] => [3,6,7,5,4,2,1] => ? = 4
[[],[],[[],[[]],[]]]
=> [[[.,.],.],[[[.,.],[.,.]],.]]
=> [1,2,4,6,5,7,3] => [3,7,5,6,4,2,1] => ? = 3
[[],[],[[],[[],[]]]]
=> [[[.,.],.],[[.,.],[[.,.],.]]]
=> [1,2,4,6,7,5,3] => [3,5,7,6,4,2,1] => ? = 4
[[],[],[[],[[[]]]]]
=> [[[.,.],.],[[.,.],[.,[.,.]]]]
=> [1,2,4,7,6,5,3] => [3,5,6,7,4,2,1] => ? = 5
[[],[],[[[]],[],[]]]
=> [[[.,.],.],[[[.,[.,.]],.],.]]
=> [1,2,5,4,6,7,3] => [3,7,6,4,5,2,1] => ? = 3
[[],[],[[[]],[[]]]]
=> [[[.,.],.],[[.,[.,.]],[.,.]]]
=> [1,2,5,4,7,6,3] => [3,6,7,4,5,2,1] => ? = 4
[[],[],[[[],[]],[]]]
=> [[[.,.],.],[[.,[[.,.],.]],.]]
=> [1,2,5,6,4,7,3] => [3,7,4,6,5,2,1] => ? = 3
[[],[],[[[[]]],[]]]
=> [[[.,.],.],[[.,[.,[.,.]]],.]]
=> [1,2,6,5,4,7,3] => [3,7,4,5,6,2,1] => ? = 3
[[],[],[[[],[],[]]]]
=> [[[.,.],.],[.,[[[.,.],.],.]]]
=> [1,2,5,6,7,4,3] => [3,4,7,6,5,2,1] => ? = 4
[[],[],[[[],[[]]]]]
=> [[[.,.],.],[.,[[.,.],[.,.]]]]
=> [1,2,5,7,6,4,3] => [3,4,6,7,5,2,1] => ? = 5
[[],[],[[[[]],[]]]]
=> [[[.,.],.],[.,[[.,[.,.]],.]]]
=> [1,2,6,5,7,4,3] => [3,4,7,5,6,2,1] => ? = 4
[[],[],[[[[],[]]]]]
=> [[[.,.],.],[.,[.,[[.,.],.]]]]
=> [1,2,6,7,5,4,3] => [3,4,5,7,6,2,1] => ? = 5
[[],[],[[[[[]]]]]]
=> [[[.,.],.],[.,[.,[.,[.,.]]]]]
=> [1,2,7,6,5,4,3] => [3,4,5,6,7,2,1] => ? = 6
[[],[[]],[],[],[],[]]
=> [[[[[[.,.],[.,.]],.],.],.],.]
=> [1,3,2,4,5,6,7] => [7,6,5,4,2,3,1] => ? = 2
[[],[[]],[],[],[[]]]
=> [[[[[.,.],[.,.]],.],.],[.,.]]
=> [1,3,2,4,5,7,6] => [6,7,5,4,2,3,1] => ? = 3
[[],[[]],[],[[]],[]]
=> [[[[[.,.],[.,.]],.],[.,.]],.]
=> [1,3,2,4,6,5,7] => [7,5,6,4,2,3,1] => ? = 2
[[],[[]],[],[[],[]]]
=> [[[[.,.],[.,.]],.],[[.,.],.]]
=> [1,3,2,4,6,7,5] => [5,7,6,4,2,3,1] => ? = 3
[[],[[]],[],[[[]]]]
=> [[[[.,.],[.,.]],.],[.,[.,.]]]
=> [1,3,2,4,7,6,5] => [5,6,7,4,2,3,1] => ? = 4
[[],[[]],[[]],[],[]]
=> [[[[[.,.],[.,.]],[.,.]],.],.]
=> [1,3,2,5,4,6,7] => [7,6,4,5,2,3,1] => ? = 2
[[],[[]],[[]],[[]]]
=> [[[[.,.],[.,.]],[.,.]],[.,.]]
=> [1,3,2,5,4,7,6] => [6,7,4,5,2,3,1] => ? = 3
[[],[[]],[[],[]],[]]
=> [[[[.,.],[.,.]],[[.,.],.]],.]
=> [1,3,2,5,6,4,7] => [7,4,6,5,2,3,1] => ? = 2
[[],[[]],[[[]]],[]]
=> [[[[.,.],[.,.]],[.,[.,.]]],.]
=> [1,3,2,6,5,4,7] => [7,4,5,6,2,3,1] => ? = 2
Description
The number of indices that are either left-to-right maxima or right-to-left minima. The (bivariate) generating function for this statistic is (essentially) given in [1], the mid points of a $321$ pattern in the permutation are those elements which are neither left-to-right maxima nor a right-to-left minima, see [[St000371]] and [[St000372]].