searching the database
Your data matches 19 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000314
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000314: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000314: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => 2
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 1
Description
The number of left-to-right-maxima of a permutation.
An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a '''left-to-right-maximum''' if there does not exist a $j < i$ such that $\sigma_j > \sigma_i$.
This is also the number of weak exceedences of a permutation that are not mid-points of a decreasing subsequence of length 3, see [1] for more on the later description.
Matching statistic: St000991
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000991: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
St000991: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => 2
[1,1,0,0]
=> [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,2,4,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,3,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,3,5,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,3,5,4,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,2,3,5,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2,4,1,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2,5,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2,4,5,1] => 1
Description
The number of right-to-left minima of a permutation.
For the number of left-to-right maxima, see [[St000314]].
Matching statistic: St000007
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00086: Permutations —first fundamental transformation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000007: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [2,3,1] => [2,1,3] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,1,2,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,3,4,2] => [4,2,1,3] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,4,1] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,3,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [3,2,4,1] => [2,3,1,4] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => [3,2,4,1] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,4,3,1] => [3,1,2,4] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [2,3,4,1] => [3,2,1,4] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [5,4,1,2,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,4,5,3] => [5,4,2,1,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [5,1,3,2,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,3,5,2] => [5,2,3,1,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,3,4,2,5] => [5,3,2,4,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [5,2,1,4,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,3,5,4,2] => [5,3,1,2,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,3,4,5,2] => [5,3,2,1,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [4,5,3,2,1] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [4,5,2,3,1] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [4,5,1,2,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => [4,5,2,1,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,4,5,2,1] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,4,5,1,2] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,4,3,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,4,3,2,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,2,3,5,1] => [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [3,2,4,1,5] => [3,4,2,5,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [2,4,1,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2,5,4,1] => [3,4,1,2,5] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [3,2,4,5,1] => [3,4,2,1,5] => 1
Description
The number of saliances of the permutation.
A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000015
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000015: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
Description
The number of peaks of a Dyck path.
Matching statistic: St000031
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000031: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
St000031: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 2
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [3,1,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,4,2,3] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [3,4,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [2,4,1,3] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [3,1,2,4] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [4,1,3,2] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [4,3,1,2] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [4,1,2,3] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,2,5,3,4] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,4,5,3,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,3,5,2,4] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,5,2,4,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,5,4,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,5,2,3,4] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [2,1,5,3,4] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [3,4,2,1,5] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [4,5,2,3,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [3,5,2,1,4] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,1,3,5] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [5,4,1,2,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [2,5,4,1,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [2,5,1,3,4] => 1
Description
The number of cycles in the cycle decomposition of a permutation.
Matching statistic: St000542
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000542: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000542: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,1,2,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [4,1,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,4,1] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,3,2,4] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,3,4,2] => 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [2,4,3,1] => 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,4,2,3] => 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [5,4,1,2,3] => 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [5,4,1,3,2] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [5,1,3,2,4] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [5,1,3,4,2] => 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [5,2,4,3,1] => 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [5,2,1,4,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [5,1,4,2,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [5,1,4,3,2] => 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [4,5,3,2,1] => 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [4,5,2,3,1] => 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [4,5,1,2,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [4,5,1,3,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,4,5,2,1] => 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,4,5,1,2] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,4,3,5,1] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,4,3,2,5] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,4,3,5,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,5,3,1] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [2,4,1,5,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,4,5,2,3] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,4,5,3,2] => 1
Description
The number of left-to-right-minima of a permutation.
An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Matching statistic: St001068
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001068: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 2
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
Description
Number of torsionless simple modules in the corresponding Nakayama algebra.
Matching statistic: St000053
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000053: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
Description
The number of valleys of the Dyck path.
Matching statistic: St001169
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001169: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001169: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
Description
Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra.
Matching statistic: St000541
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00235: Permutations —descent views to invisible inversion bottoms⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
St000541: Permutations ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => ? = 1 - 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 1 = 2 - 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [3,2,1] => 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,1,2] => 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,3,1] => 1 = 2 - 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [1,2,3] => 0 = 1 - 1
[1,1,1,0,0,0]
=> [3,1,2] => [3,1,2] => [1,3,2] => 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [4,3,1,2] => 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [4,2,3,1] => 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,1,2,3] => 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,4,2,3] => [4,1,3,2] => 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [3,4,2,1] => 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [3,4,1,2] => 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,4,1] => 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [1,3,2,4] => 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4,2,1,3] => [1,3,4,2] => 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1,2,4] => [2,4,3,1] => 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [3,4,1,2] => [2,1,4,3] => 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [4,1,3,2] => [1,4,2,3] => 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => [1,4,3,2] => 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [5,4,3,1,2] => 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [5,4,2,3,1] => 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [5,4,1,2,3] => 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => [5,4,1,3,2] => 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [5,3,4,1,2] => 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [5,1,3,2,4] => 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => [5,1,3,4,2] => 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,4,2,3,5] => [5,2,4,3,1] => 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => [5,2,1,4,3] => 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => [5,1,4,2,3] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,5,2,3,4] => [5,1,4,3,2] => 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [4,5,3,2,1] => 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [4,5,3,1,2] => 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [4,5,2,3,1] => 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [4,5,1,2,3] => 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => [4,5,1,3,2] => 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,4,5,2,1] => 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,4,5,1,2] => 1 = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,4,3,5,1] => 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [1,4,3,2,5] => 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => [1,4,3,5,2] => 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => [2,4,5,3,1] => 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => [2,4,1,5,3] => 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => [1,4,5,2,3] => 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => [1,4,5,3,2] => 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => [3,5,4,2,1] => 2 = 3 - 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right.
For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
The following 9 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000942The number of critical left to right maxima of the parking functions. St001621The number of atoms of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!