searching the database
Your data matches 66 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000993
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2]
=> 1
[1,1]
=> 2
[3]
=> 1
[2,1]
=> 1
[1,1,1]
=> 3
[4]
=> 1
[3,1]
=> 1
[2,2]
=> 2
[2,1,1]
=> 1
[1,1,1,1]
=> 4
[5]
=> 1
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 2
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 5
[6]
=> 1
[5,1]
=> 1
[4,2]
=> 1
[4,1,1]
=> 1
[3,3]
=> 2
[3,2,1]
=> 1
[3,1,1,1]
=> 1
[2,2,2]
=> 3
[2,2,1,1]
=> 2
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 6
[7]
=> 1
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 1
[4,1,1,1]
=> 1
[3,3,1]
=> 2
[3,2,2]
=> 1
[3,2,1,1]
=> 1
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 3
[2,2,1,1,1]
=> 2
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 7
[8]
=> 1
[7,1]
=> 1
[6,2]
=> 1
[6,1,1]
=> 1
[5,3]
=> 1
[5,2,1]
=> 1
[5,1,1,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000382
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 83% ●values known / values provided: 95%●distinct values known / distinct values provided: 83%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00172: Integer compositions —rotate back to front⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 83% ●values known / values provided: 95%●distinct values known / distinct values provided: 83%
Values
[2]
=> [1,1,0,0,1,0]
=> [2,1] => [1,2] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => [2,1] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => [1,3] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => [3,1] => 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,4] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,2,1] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,1,2] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1] => 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => [1,5] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => [1,3,1] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2,1] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,2] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,1,3] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => [5,1] => 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => [1,6] => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => [1,4,1] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => [1,3,1] => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,2,2] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [2,3] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,1,3] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [2,1,2] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => [1,1,4] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => [6,1] => 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => [1,7] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => [1,5,1] => 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => [1,4,1] => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => [1,3,2] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,2,1,1] => 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,3] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [2,2,1] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,2,2] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,1,2,1] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => [1,1,4] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => [2,1,3] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => [1,1,5] => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => [7,1] => 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => [1,8] => 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1] => [1,6,1] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => [1,5,1] => 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,2,1] => [1,4,2] => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => [1,4,1] => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => [1,3,1,1] => 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => [1,2,3] => 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1,1] => ? => ? = 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,7,2] => [2,1,7] => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,9,1] => [1,1,9] => ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? => ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? => ? => ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1,1] => ? => ? = 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,1] => ? => ? = 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [8,2,1] => ? => ? = 1
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,9,1] => [1,1,9] => ? = 1
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,6,3] => [3,1,6] => ? = 3
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,8,2] => [2,1,8] => ? = 2
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10,1] => [1,1,10] => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? => ? = 12
Description
The first part of an integer composition.
Matching statistic: St000326
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 83% ●values known / values provided: 89%●distinct values known / distinct values provided: 83%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 83% ●values known / values provided: 89%●distinct values known / distinct values provided: 83%
Values
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => 10 => 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => 01 => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 100 => 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => 11 => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 001 => 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => 1000 => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 110 => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 010 => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 101 => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0001 => 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => 10000 => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 1100 => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 110 => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 101 => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 011 => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1001 => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 00001 => 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => 100000 => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => 11000 => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 1100 => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1010 => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 0100 => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 111 => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1001 => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0010 => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0101 => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => 10001 => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => 000001 => 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => 1000000 => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => 110000 => 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => 11000 => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => 10100 => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1100 => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1110 => 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1001 => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0110 => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 1010 => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1101 => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => 10001 => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0011 => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => 01001 => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => 100001 => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => 0000001 => 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => 10000000 => 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => 1100000 => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => 110000 => 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => 101000 => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => 11000 => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => 11100 => 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => 10010 => 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [11,2,1,3,4,5,6,7,8,9,10] => 1100000000 => ? = 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,1,4,5,6,7,8] => ? => ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,1,5,6,7] => ? => ? = 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,1] => ? => ? = 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,1] => ? => ? = 3
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,1] => ? => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? => ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? => ? => ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [12,2,1,3,4,5,6,7,8,9,10,11] => 11000000000 => ? = 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [11,3,1,2,4,5,6,7,8,9,10] => 1100000000 => ? = 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [11,2,3,1,4,5,6,7,8,9,10] => ? => ? = 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,1,4,5,6,7,8,9] => ? => ? = 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [9,5,1,2,3,4,6,7,8] => ? => ? = 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,1,3,5,6,7,8] => ? => ? = 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,1,5,6,7,8] => ? => ? = 1
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,1,2,5,6,7] => ? => ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,1,6,7] => ? => ? = 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,3,2,4,5,7,8,1] => ? => ? = 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [6,2,3,4,5,7,8,9,1] => ? => ? = 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [5,3,2,4,6,7,8,9,1] => ? => ? = 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,10,1] => ? => ? = 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,2,6,7,8,9,1] => ? => ? = 1
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,10,11,1] => ? => ? = 1
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,1] => ? => ? = 4
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,1] => ? => ? = 3
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,11,1] => ? => ? = 2
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,12,1] => ? => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? => ? = 12
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000383
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 83% ●values known / values provided: 89%●distinct values known / distinct values provided: 83%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 83% ●values known / values provided: 89%●distinct values known / distinct values provided: 83%
Values
[2]
=> [1,1,0,0,1,0]
=> [2,1] => 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,1] => 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1] => 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,1,1] => 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,2,1] => 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,1,1] => 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,1,1,1] => 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,1] => 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => ? = 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1,1] => ? = 1
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [7,2,1] => ? = 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [6,1,1,1] => ? = 1
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [5,3,1] => ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [4,2,1,1] => ? = 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4] => ? = 4
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,5,3] => ? = 3
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,7,2] => ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,9,1] => ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? => ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1,1] => ? = 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,1] => ? = 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [8,2,1] => ? = 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [7,1,1,1] => ? = 1
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [6,3,1] => ? = 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [6,1,1,1] => ? = 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [5,2,1,1] => ? = 1
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [4,4,1] => ? = 1
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [4,2,1,1] => ? = 1
[7,1,1,1,1,1]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [2,5,1] => ? = 1
[6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [6,2] => ? = 2
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,9,1] => ? = 1
[2,2,2,2,2,2]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,6] => ? = 6
[2,2,2,2,2,1,1]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [1,4,4] => ? = 4
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,6,3] => ? = 3
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,8,2] => ? = 2
[2,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10,1] => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ? = 12
Description
The last part of an integer composition.
Matching statistic: St001038
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 85%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 85%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1]
=> [2]
=> []
=> []
=> ? = 2
[3]
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1]
=> [2,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1]
=> [3]
=> []
=> []
=> ? = 3
[4]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,1]
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2]
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,1]
=> [3,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1]
=> [4]
=> []
=> []
=> ? = 4
[5]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,1]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,2]
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,1,1]
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2,1]
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,1,1]
=> [4,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1]
=> [5]
=> []
=> []
=> ? = 5
[6]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[5,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,2]
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,1]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,3]
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[3,2,1]
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,1,1,1]
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2,2]
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[2,2,1,1]
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,1,1,1]
=> [5,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1]
=> [6]
=> []
=> []
=> ? = 6
[7]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[6,1]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[5,2]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[5,1,1]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,3]
=> [2,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[4,2,1]
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,1,1]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,3,1]
=> [3,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[3,2,2]
=> [3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,2,1,1]
=> [4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,1,1,1,1]
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2,2,1]
=> [4,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[2,2,1,1,1]
=> [5,2]
=> [2]
=> [1,0,1,0]
=> 2
[2,1,1,1,1,1]
=> [6,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1]
=> [7]
=> []
=> []
=> ? = 7
[8]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[7,1]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[6,2]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
[6,1,1]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[5,3]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[5,2,1]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[5,1,1,1]
=> [4,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,4]
=> [2,2,2,2]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
[4,3,1]
=> [3,2,2,1]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 1
[4,2,2]
=> [3,3,1,1]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[4,2,1,1]
=> [4,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[4,1,1,1,1]
=> [5,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,3,2]
=> [3,3,2]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 2
[3,3,1,1]
=> [4,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[3,2,2,1]
=> [4,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,2,1,1,1]
=> [5,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,1,1,1,1,1]
=> [6,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2,2,2]
=> [4,4]
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4
[2,2,2,1,1]
=> [5,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[2,1,1,1,1,1,1]
=> [7,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1,1]
=> [8]
=> []
=> []
=> ? = 8
[9]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1]
=> [8,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1]
=> [9]
=> []
=> []
=> ? = 9
[10]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,1]
=> [2,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1]
=> [9,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1]
=> [10]
=> []
=> []
=> ? = 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[10,1]
=> [2,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,2]
=> [2,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[8,3]
=> [2,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1,1]
=> [10,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [11]
=> []
=> []
=> ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[11,1]
=> [2,1,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[10,2]
=> [2,2,1,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,3]
=> [2,2,2,1,1,1,1,1,1]
=> [2,2,1,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> [2,1,1,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[8,4]
=> [2,2,2,2,1,1,1,1]
=> [2,2,2,1,1,1,1]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[8,3,1]
=> [3,2,2,1,1,1,1,1]
=> [2,2,1,1,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[8,2,2]
=> [3,3,1,1,1,1,1,1]
=> [3,1,1,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1,1,1,1]
=> [11,1]
=> [1]
=> [1,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1,1]
=> [12]
=> []
=> []
=> ? = 12
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000617
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000617: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St000617: Dyck paths ⟶ ℤResult quality: 81% ●values known / values provided: 81%●distinct values known / distinct values provided: 83%
Values
[2]
=> [1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [1,1,0,1,0,1,0,1,0,1,0,0]
=> 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [7,1,2,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [6,2,1,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [3,2,4,5,6,1] => [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,4,5,6,7,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [8,1,2,3,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [7,2,1,3,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [6,2,3,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [4,2,3,5,6,1] => [1,1,1,1,0,0,0,1,0,1,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [3,4,2,5,6,1] => [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [3,2,4,5,6,7,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,5,6,7,8,1] => [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1,2,3,4,5,6,7,8] => [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [8,2,1,3,4,5,6,7] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [7,3,1,2,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [7,2,3,1,4,5,6] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [6,3,2,1,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [6,2,3,4,1,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [4,2,3,5,6,7,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,3,2,5,6,7,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [4,2,3,5,6,7,8,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[4,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [5,2,3,4,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[3,3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,5,2,3,6,7,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 2
[3,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [4,3,5,2,6,7,1] => [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> ? = 1
[3,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [4,3,2,5,6,7,8,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [12,1,2,3,4,5,6,7,8,9,10,11] => [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,1,4,5,6,7,8] => ?
=> ? = 1
[7,2,1,1]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,1,5,6,7] => ?
=> ? = 1
[5,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,2,3,4,5,7,8,1] => [1,1,1,1,1,1,0,0,0,0,0,1,0,1,0,0]
=> ? = 1
[4,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [5,3,2,4,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,1] => ?
=> ? = 1
[3,3,2,1,1,1]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [4,5,3,2,6,7,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> ? = 2
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [4,5,2,3,6,7,8,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
[3,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,3,5,2,6,7,8,1] => [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,0]
=> ? = 1
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [4,3,2,5,6,7,8,9,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,10,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,1] => [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 4
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,1] => ?
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,1] => ?
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [3,2,4,5,6,7,8,9,10,11,1] => [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> ? => ?
=> ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ? => ?
=> ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [12,2,1,3,4,5,6,7,8,9,10,11] => [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0]
=> ? = 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [11,2,3,1,4,5,6,7,8,9,10] => ?
=> ? = 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [10,3,2,1,4,5,6,7,8,9] => ?
=> ? = 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [9,5,1,2,3,4,6,7,8] => ?
=> ? = 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [9,4,2,1,3,5,6,7,8] => ?
=> ? = 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [9,3,2,4,1,5,6,7,8] => ?
=> ? = 1
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [8,4,3,1,2,5,6,7] => ?
=> ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [8,3,2,4,5,1,6,7] => ?
=> ? = 1
[5,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,3,2,4,5,7,8,1] => ?
=> ? = 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [6,2,3,4,5,7,8,9,1] => ?
=> ? = 1
[4,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,2,3,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[4,2,2,2,2]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [5,3,4,6,7,1,2] => [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> ? = 1
[4,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [5,3,4,2,6,7,8,1] => [1,1,1,1,1,0,0,0,0,1,0,1,0,1,0,0]
=> ? = 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [5,3,2,4,6,7,8,9,1] => ?
=> ? = 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [5,2,3,4,6,7,8,9,10,1] => ?
=> ? = 1
[3,3,2,2,2]
=> [1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [4,5,3,6,7,1,2] => [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> ? = 2
[3,3,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,3,2,6,7,8,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,0]
=> ? = 2
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [4,5,2,3,6,7,8,9,1] => [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ? = 2
[3,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,3,5,6,2,7,8,1] => [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0]
=> ? = 1
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [4,3,5,2,6,7,8,9,1] => ?
=> ? = 1
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [4,3,2,5,6,7,8,9,10,1] => [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ? = 1
[3,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [4,2,3,5,6,7,8,9,10,11,1] => ?
=> ? = 1
[2,2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [3,4,5,6,2,7,8,9,1] => ?
=> ? = 4
[2,2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [3,4,5,2,6,7,8,9,10,1] => ?
=> ? = 3
[2,2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [3,4,2,5,6,7,8,9,10,11,1] => ?
=> ? = 2
Description
The number of global maxima of a Dyck path.
Matching statistic: St000678
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 58% ●values known / values provided: 79%●distinct values known / distinct values provided: 58%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 58% ●values known / values provided: 79%●distinct values known / distinct values provided: 58%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> 5
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> 6
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 2
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> 7
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 8
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[7,1,1]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 9
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> ? = 2
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 10
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 1
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0,0]
=> ?
=> ? = 1
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> ?
=> ? = 1
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0,1,0,1,0]
=> ?
=> ? = 3
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 2
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 11
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> ?
=> ? = 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> ?
=> ? = 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> ?
=> ? = 1
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 1
[7,2,1,1,1]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 1
[7,1,1,1,1,1]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> ?
=> ? = 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,1,0,1,0,0,0,0,0]
=> ?
=> ? = 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> ?
=> ? = 1
[3,3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> ?
=> ? = 2
[3,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> ? = 1
[3,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000974
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000974: Ordered trees ⟶ ℤResult quality: 50% ●values known / values provided: 77%●distinct values known / distinct values provided: 50%
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000974: Ordered trees ⟶ ℤResult quality: 50% ●values known / values provided: 77%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [[[]],[]]
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [[[],[]]]
=> 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [[],[],[]]
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> 2 = 3 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> 3 = 4 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[[[]]]]],[]]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4 = 5 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[[[[]]]]]],[]]
=> 0 = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [[],[[[[]]]],[]]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> 2 = 3 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[],[[[[],[]]]]]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[[[[[[],[]]]]]]]
=> 5 = 6 - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[]]]]]]],[]]
=> 0 = 1 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[],[[[[[]]]]],[]]
=> 0 = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [[[]],[[[]]],[]]
=> 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[[[],[[]]]],[]]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[[[],[]]],[]]
=> 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[],[[[[]],[]]]]
=> 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[[],[],[]]]]
=> 2 = 3 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[[],[[[],[]]]]]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[],[[[[[],[]]]]]]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 7 - 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[]]]]]]]],[]]
=> 0 = 1 - 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[],[[[[[[]]]]]],[]]
=> 0 = 1 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[]],[[[[]]]],[]]
=> 0 = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [[[[[],[[]]]]],[]]
=> 0 = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> [[[[]]],[[]],[]]
=> 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [[],[],[[[]]],[]]
=> 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [[[],[[[]]]],[]]
=> 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [[[[[[]]]],[]]]
=> 1 = 2 - 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [[[[[[[[[],[]]]]]]]]]
=> ? = 8 - 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[],[[[[[[[]]]]]]],[]]
=> ? = 1 - 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[[],[[[[[],[]]]]]]]
=> ? = 2 - 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [[[[[[[[[[],[]]]]]]]]]]
=> ? = 9 - 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[],[[[[[[[[]]]]]]]],[]]
=> ? = 1 - 1
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[]],[[[[[[]]]]]],[]]
=> ? = 1 - 1
[7,3]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[]]],[[[[]]]],[]]
=> ? = 1 - 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[[[],[[[[],[]]]]]]]
=> ? = 3 - 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[],[[[[[[],[]]]]]]]]
=> ? = 2 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [[[[[[[[[[[],[]]]]]]]]]]]
=> ? = 10 - 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[[[[]]]]]]]]]]],[]]
=> ? = 1 - 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[],[[[[[[[[[]]]]]]]]],[]]
=> ? = 1 - 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[]],[[[[[[[]]]]]]],[]]
=> ? = 1 - 1
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[],[[]]]]]]]],[]]
=> ? = 1 - 1
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[[[]]],[[[[[]]]]],[]]
=> ? = 1 - 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[],[],[[[[[[]]]]]],[]]
=> ? = 1 - 1
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[[],[[[]]]]]]],[]]
=> ? = 1 - 1
[7,4]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0,1,0]
=> [[[[[]]]],[[[]]],[]]
=> ? = 1 - 1
[7,2,2]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0,1,0]
=> [[[[[[]],[[]]]]],[]]
=> ? = 1 - 1
[7,1,1,1,1]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[],[[[[]]]]]],[]]
=> ? = 1 - 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [[],[[[[[[[]]],[]]]]]]
=> ? = 1 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[[],[[[[[]],[]]]]]]
=> ? = 2 - 1
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[],[],[[[[[[],[]]]]]]]
=> ? = 1 - 1
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [[],[[[[[[[[]],[]]]]]]]]
=> ? = 1 - 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [[[[[],[[[],[]]]]]]]
=> ? = 4 - 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[],[[[[[],[]]]]]]]]
=> ? = 3 - 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [[[],[[[[[[[],[]]]]]]]]]
=> ? = 2 - 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [[],[[[[[[[[[],[]]]]]]]]]]
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0]
=> [[[[[[[[[[[[],[]]]]]]]]]]]]
=> ? = 11 - 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1 - 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> ?
=> ? = 1 - 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[[]],[[[[[[[[]]]]]]]],[]]
=> ? = 1 - 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[[[],[[]]]]]]]]],[]]
=> ? = 1 - 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[[]]],[[[[[[]]]]]],[]]
=> ? = 1 - 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[],[],[[[[[[[]]]]]]],[]]
=> ? = 1 - 1
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[[[[[[],[[[]]]]]]]],[]]
=> ? = 1 - 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[[[[]]]],[]]
=> ? = 1 - 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [[],[[]],[[[[[]]]]],[]]
=> ? = 1 - 1
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [[[[[[[]],[[]]]]]],[]]
=> ? = 1 - 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[],[[],[[[[[]]]]]],[]]
=> ? = 1 - 1
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[[[[],[[[[]]]]]]],[]]
=> ? = 1 - 1
[7,5]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [[[[[[]]]]],[[]],[]]
=> ? = 1 - 1
[7,3,1,1]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [[[],[]],[[[[]]]],[]]
=> ? = 1 - 1
[7,2,2,1]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0,1,0]
=> [[[[[],[],[[]]]]],[]]
=> ? = 1 - 1
[7,1,1,1,1,1]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[[],[[[[[]]]]]],[]]
=> ? = 1 - 1
[6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [[[[[[[[]]]]]],[]]]
=> ? = 2 - 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [[],[[[[[[[]]]],[]]]]]
=> ? = 1 - 1
[4,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[],[],[[[[[[]],[]]]]]]
=> ? = 1 - 1
[4,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [[],[[[[[[[[]]],[]]]]]]]
=> ? = 1 - 1
Description
The length of the trunk of an ordered tree.
This is the length of the path from the root to the first vertex which has not exactly one child.
Matching statistic: St001107
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 76%●distinct values known / distinct values provided: 50%
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 76%●distinct values known / distinct values provided: 50%
Values
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0 = 1 - 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3 = 4 - 1
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 0 = 1 - 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1 = 2 - 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 4 = 5 - 1
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> 0 = 1 - 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1 = 2 - 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> 5 = 6 - 1
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> 0 = 1 - 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 1 - 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1 = 2 - 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 1 = 2 - 1
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? = 7 - 1
[8]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[7,1]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> 0 = 1 - 1
[6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> 0 = 1 - 1
[5,3]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[5,2,1]
=> [1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[5,1,1,1]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 0 = 1 - 1
[4,4]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1 = 2 - 1
[4,3,1]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 1 - 1
[2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> ? = 8 - 1
[9]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[8,1]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 2 - 1
[2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> ? = 9 - 1
[10]
=> [1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 1 - 1
[9,1]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[8,2]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1 - 1
[8,1,1]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> ? = 1 - 1
[7,2,1]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1 - 1
[3,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> ? = 1 - 1
[2,2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 3 - 1
[2,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> ? = 2 - 1
[2,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> ? = 10 - 1
[11]
=> [1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[10,1]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[9,2]
=> [1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[9,1,1]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,3]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[8,2,1]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,1,1,1]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[4,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> ? = 1 - 1
[3,3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> ? = 2 - 1
[3,2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 1 - 1
[3,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 1 - 1
[2,2,2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> ? = 4 - 1
[2,2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 3 - 1
[2,2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 2 - 1
[2,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ?
=> ? = 1 - 1
[1,1,1,1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ?
=> ? = 11 - 1
[12]
=> [1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[11,1]
=> [1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[10,2]
=> [1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[10,1,1]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[9,3]
=> [1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[9,2,1]
=> [1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[9,1,1,1]
=> [1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,4]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,3,1]
=> [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,2,2]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> ? = 1 - 1
[8,2,1,1]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> ?
=> ? = 1 - 1
[8,1,1,1,1]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> ? = 1 - 1
[7,3,2]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 1 - 1
[6,6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 2 - 1
[5,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0]
=> ? = 1 - 1
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path.
In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Matching statistic: St000297
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00095: Integer partitions —to binary word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 83%
St000297: Binary words ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 83%
Values
[2]
=> 100 => 1
[1,1]
=> 110 => 2
[3]
=> 1000 => 1
[2,1]
=> 1010 => 1
[1,1,1]
=> 1110 => 3
[4]
=> 10000 => 1
[3,1]
=> 10010 => 1
[2,2]
=> 1100 => 2
[2,1,1]
=> 10110 => 1
[1,1,1,1]
=> 11110 => 4
[5]
=> 100000 => 1
[4,1]
=> 100010 => 1
[3,2]
=> 10100 => 1
[3,1,1]
=> 100110 => 1
[2,2,1]
=> 11010 => 2
[2,1,1,1]
=> 101110 => 1
[1,1,1,1,1]
=> 111110 => 5
[6]
=> 1000000 => 1
[5,1]
=> 1000010 => 1
[4,2]
=> 100100 => 1
[4,1,1]
=> 1000110 => 1
[3,3]
=> 11000 => 2
[3,2,1]
=> 101010 => 1
[3,1,1,1]
=> 1001110 => 1
[2,2,2]
=> 11100 => 3
[2,2,1,1]
=> 110110 => 2
[2,1,1,1,1]
=> 1011110 => 1
[1,1,1,1,1,1]
=> 1111110 => 6
[7]
=> 10000000 => 1
[6,1]
=> 10000010 => 1
[5,2]
=> 1000100 => 1
[5,1,1]
=> 10000110 => 1
[4,3]
=> 101000 => 1
[4,2,1]
=> 1001010 => 1
[4,1,1,1]
=> 10001110 => 1
[3,3,1]
=> 110010 => 2
[3,2,2]
=> 101100 => 1
[3,2,1,1]
=> 1010110 => 1
[3,1,1,1,1]
=> 10011110 => 1
[2,2,2,1]
=> 111010 => 3
[2,2,1,1,1]
=> 1101110 => 2
[2,1,1,1,1,1]
=> 10111110 => 1
[1,1,1,1,1,1,1]
=> 11111110 => 7
[8]
=> 100000000 => 1
[7,1]
=> 100000010 => 1
[6,2]
=> 10000100 => 1
[6,1,1]
=> 100000110 => 1
[5,3]
=> 1001000 => 1
[5,2,1]
=> 10001010 => 1
[5,1,1,1]
=> 100001110 => 1
[11]
=> 100000000000 => ? = 1
[10,1]
=> 100000000010 => ? = 1
[9,1,1]
=> 100000000110 => ? = 1
[8,3]
=> 1000001000 => ? = 1
[8,1,1,1]
=> 100000001110 => ? = 1
[7,3,1]
=> 1000010010 => ? = 1
[7,2,2]
=> 1000001100 => ? = 1
[7,1,1,1,1]
=> 100000011110 => ? = 1
[6,3,1,1]
=> 1000100110 => ? = 1
[6,2,2,1]
=> 1000011010 => ? = 1
[6,1,1,1,1,1]
=> 100000111110 => ? = 1
[5,1,1,1,1,1,1]
=> 100001111110 => ? = 1
[4,3,1,1,1,1]
=> 1010011110 => ? = 1
[4,2,2,1,1,1]
=> 1001101110 => ? = 1
[4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
[3,3,1,1,1,1,1]
=> 1100111110 => ? = 2
[3,2,2,1,1,1,1]
=> 1011011110 => ? = 1
[3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? = 1
[2,1,1,1,1,1,1,1,1,1]
=> 101111111110 => ? = 1
[1,1,1,1,1,1,1,1,1,1,1]
=> 111111111110 => ? = 11
[12]
=> 1000000000000 => ? = 1
[11,1]
=> 1000000000010 => ? = 1
[10,2]
=> 100000000100 => ? = 1
[10,1,1]
=> 1000000000110 => ? = 1
[9,3]
=> 10000001000 => ? = 1
[9,2,1]
=> 100000001010 => ? = 1
[9,1,1,1]
=> 1000000001110 => ? = 1
[8,4]
=> 1000010000 => ? = 1
[8,3,1]
=> 10000010010 => ? = 1
[8,2,2]
=> 10000001100 => ? = 1
[8,2,1,1]
=> 100000010110 => ? = 1
[8,1,1,1,1]
=> 1000000011110 => ? = 1
[7,4,1]
=> 1000100010 => ? = 1
[7,3,2]
=> 1000010100 => ? = 1
[7,3,1,1]
=> 10000100110 => ? = 1
[7,2,2,1]
=> 10000011010 => ? = 1
[7,2,1,1,1]
=> 100000101110 => ? = 1
[7,1,1,1,1,1]
=> 1000000111110 => ? = 1
[6,4,1,1]
=> 1001000110 => ? = 1
[6,3,2,1]
=> 1000101010 => ? = 1
[6,3,1,1,1]
=> 10001001110 => ? = 1
[6,2,2,2]
=> 1000011100 => ? = 1
[6,2,2,1,1]
=> 10000110110 => ? = 1
[6,2,1,1,1,1]
=> 100001011110 => ? = 1
[6,1,1,1,1,1,1]
=> 1000001111110 => ? = 1
[5,3,1,1,1,1]
=> 10010011110 => ? = 1
[5,2,2,1,1,1]
=> 10001101110 => ? = 1
[5,2,1,1,1,1,1]
=> 100010111110 => ? = 1
[5,1,1,1,1,1,1,1]
=> 1000011111110 => ? = 1
[4,4,1,1,1,1]
=> 1100011110 => ? = 2
Description
The number of leading ones in a binary word.
The following 56 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000823The number of unsplittable factors of the set partition. St000273The domination number of a graph. St000544The cop number of a graph. St000916The packing number of a graph. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001322The size of a minimal independent dominating set in a graph. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St001733The number of weak left to right maxima of a Dyck path. St001829The common independence number of a graph. St000918The 2-limited packing number of a graph. St000439The position of the first down step of a Dyck path. St000733The row containing the largest entry of a standard tableau. St000234The number of global ascents of a permutation. St000546The number of global descents of a permutation. St000745The index of the last row whose first entry is the row number in a standard Young tableau. St000007The number of saliances of the permutation. St000883The number of longest increasing subsequences of a permutation. St000759The smallest missing part in an integer partition. St000989The number of final rises of a permutation. St000990The first ascent of a permutation. St000260The radius of a connected graph. St000971The smallest closer of a set partition. St000654The first descent of a permutation. St000056The decomposition (or block) number of a permutation. St000287The number of connected components of a graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St000221The number of strong fixed points of a permutation. St000315The number of isolated vertices of a graph. St000025The number of initial rises of a Dyck path. St001088Number of indecomposable projective non-injective modules with dominant dimension equal to the injective dimension in the corresponding Nakayama algebra. St000765The number of weak records in an integer composition. St000657The smallest part of an integer composition. St000054The first entry of the permutation. St000911The number of maximal antichains of maximal size in a poset. St000542The number of left-to-right-minima of a permutation. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000026The position of the first return of a Dyck path. St001481The minimal height of a peak of a Dyck path. St000090The variation of a composition. St001226The number of integers i such that the radical of the i-th indecomposable projective module has vanishing first extension group with the Jacobson radical J in the corresponding Nakayama algebra. St000069The number of maximal elements of a poset. St001050The number of terminal closers of a set partition. St001075The minimal size of a block of a set partition. St000909The number of maximal chains of maximal size in a poset. St000363The number of minimal vertex covers of a graph. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000991The number of right-to-left minima of a permutation. St000908The length of the shortest maximal antichain in a poset. St000264The girth of a graph, which is not a tree. St000740The last entry of a permutation. St000314The number of left-to-right-maxima of a permutation. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!