searching the database
Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000993
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1]
=> 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,2]
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [2,2,2,1,1]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1]
=> 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [2,2]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [3,3]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [2,2,1,1,1]
=> 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1]
=> 2
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000382
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00039: Integer compositions —complement⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [3,2] => 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,3] => 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [2,3] => 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [2,1,2] => 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [3,1,2] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [3,1,2] => 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [4,2] => 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => [3,3] => 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [3,1,2] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [2,2,2] => 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,1,1,1] => [2,4] => 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,2,1] => [2,2,2] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [2,1,3] => 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [2,1,3] => 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [2,1,3] => 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,3,1,1] => [2,1,3] => 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,1,1,1,1,1,1] => [2,1,7] => ? = 2
Description
The first part of an integer composition.
Matching statistic: St000678
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 71% ●values known / values provided: 98%●distinct values known / distinct values provided: 71%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St000678: Dyck paths ⟶ ℤResult quality: 71% ●values known / values provided: 98%●distinct values known / distinct values provided: 71%
Values
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 7
[1,1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 7
[1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 6
[1,1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,0,1,0,0,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 2
[1,0,1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,1,0]
=> ?
=> ?
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 8
[1,1,0,1,0,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 7
[1,1,0,1,0,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,1,0,1,0,0]
=> ?
=> ?
=> ? = 6
[1,1,1,1,0,1,1,0,0,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> ?
=> ?
=> ? = 2
[1,1,1,1,1,0,0,0,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
Description
The number of up steps after the last double rise of a Dyck path.
Matching statistic: St000383
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 57%
Mp00030: Dyck paths —zeta map⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 49% ●values known / values provided: 49%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,1,2] => 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,2] => 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,1,4] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,3,4] => ? = 4
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
[1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,6] => ? = 6
[1,0,1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,5] => ? = 5
[1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,2,5] => ? = 5
Description
The last part of an integer composition.
Matching statistic: St000546
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000546: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 71%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
St000546: Permutations ⟶ ℤResult quality: 31% ●values known / values provided: 31%●distinct values known / distinct values provided: 71%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2 = 3 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => 2 = 3 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 1 = 2 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,2,1] => 2 = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => 2 = 3 - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,2,1] => 2 = 3 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => 2 = 3 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,4,6,3,2,1] => 3 = 4 - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,4,3,6,2,1] => 2 = 3 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,3,6,5,2,1] => 2 = 3 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,5,6,2,1] => 2 = 3 - 1
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,4,3,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,3,5,2,6,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 1 = 2 - 1
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 1 = 2 - 1
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,5,6,4,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,3,2,5,6,1] => 1 = 2 - 1
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => 1 = 2 - 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 4 - 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 4 - 1
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 4 - 1
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => ? = 3 - 1
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => ? = 3 - 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => ? = 3 - 1
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => ? = 4 - 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => ? = 4 - 1
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => ? = 4 - 1
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => ? = 5 - 1
Description
The number of global descents of a permutation.
The global descents are the integers in the set
C(π)={i∈[n−1]:∀1≤j≤i<k≤n:π(j)>π(k)}.
In particular, if i∈C(π) then i is a descent.
For the number of global ascents, see [[St000234]].
Matching statistic: St001107
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Mp00101: Dyck paths —decomposition reverse⟶ Dyck paths
Mp00124: Dyck paths —Adin-Bagno-Roichman transformation⟶ Dyck paths
St001107: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0 = 2 - 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1 = 3 - 2
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1 = 3 - 2
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> 2 = 4 - 2
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1 = 3 - 2
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 1 = 3 - 2
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> 0 = 2 - 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> 0 = 2 - 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> 0 = 2 - 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,1,0,0,0,0]
=> ? = 4 - 2
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,0]
=> ? = 5 - 2
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> ? = 6 - 2
Description
The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path.
In other words, this is the lowest height of a valley of a Dyck path, or its semilength in case of the unique path without valleys.
Matching statistic: St000234
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
St000234: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [2,1,3,4,5] => 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [3,1,2,4,5] => 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6] => 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [3,2,1,4,5,6] => 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [3,1,2,4,5,6] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [2,3,4,1,5,6] => 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,4,1,5,6] => 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,2,1,5,6] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [4,3,2,1,5,6] => 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [4,2,3,1,5,6] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [3,4,1,2,5,6] => 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,3,1,2,5,6] => 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [3,2,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [3,2,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [3,2,1,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [2,3,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [3,2,4,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [3,4,2,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [4,3,2,1,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [3,4,1,2,5,6,7,8] => ? = 4
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [3,2,1,4,5,6,7,8] => ? = 5
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7,8] => ? = 5
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7,8] => ? = 6
Description
The number of global ascents of a permutation.
The global ascents are the integers i such that
C(π)={i∈[n−1]∣∀1≤j≤i<k≤n:π(j)<π(k)}.
Equivalently, by the pigeonhole principle,
C(π)={i∈[n−1]∣∀1≤j≤i:π(j)≤i}.
For n>1 it can also be described as an occurrence of the mesh pattern
([1,2],{(0,2),(1,0),(1,1),(2,0),(2,1)})
or equivalently
([1,2],{(0,1),(0,2),(1,1),(1,2),(2,0)}),
see [3].
According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Matching statistic: St000974
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000974: Ordered trees ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00026: Dyck paths —to ordered tree⟶ Ordered trees
St000974: Ordered trees ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[[[],[],[]]]]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[],[],[]]]]]
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[[]],[]]]]]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[],[],[]]]]]
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[[]],[]]]]]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [[[[[],[[]]]]]]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [[[[[],[],[]]]]]
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [[[[[[]],[]]]]]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[[[],[[[]]]]]]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[[[],[[],[]]]]]
=> 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[[[],[],[[]]]]]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[[[],[],[[]]]]]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[[[],[],[[]]]]]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[[[],[],[],[]]]]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[[[],[[]],[]]]]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[[]],[[]]]]]
=> 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[[]],[[]]]]]
=> 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [[[[[]],[[]]]]]
=> 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [[[[[]],[],[]]]]
=> 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [[[[[[[],[],[]]]]]]]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[[[[[[[]],[]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [[[[[[[],[],[]]]]]]]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[[[[[[[]],[]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [[[[[[[],[],[]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[[[[[[[]],[]]]]]]]
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [[[[[[],[[[]]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [[[[[[],[[],[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [[[[[[],[],[[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [[[[[[],[],[[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [[[[[[],[],[[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [[[[[[],[],[],[]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [[[[[[[]],[[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [[[[[[[]],[[]]]]]]]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [[[[[[[]],[[]]]]]]]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[[[[[[],[[]]]]]]]]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [[[[[[[],[],[]]]]]]]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[[[[[[[]],[]]]]]]]
=> ? = 5
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[[[[[[[],[]]]]]]]]
=> ? = 6
Description
The length of the trunk of an ordered tree.
This is the length of the path from the root to the first vertex which has not exactly one child.
Matching statistic: St001135
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001135: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
St001135: Dyck paths ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> ? = 4
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 5
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 6
Description
The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001810
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00103: Dyck paths —peeling map⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
St001810: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
Mp00024: Dyck paths —to 321-avoiding permutation⟶ Permutations
St001810: Permutations ⟶ ℤResult quality: 27% ●values known / values provided: 27%●distinct values known / distinct values provided: 57%
Values
[1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> [1,2,4,3] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 3
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,2,3,5,4] => 3
[1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 2
[1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 2
[1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,2,4,5,3] => 2
[1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,2,4,3,5] => 2
[1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,2,5,3,4] => 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => 3
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => 3
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => 3
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => 3
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5] => 4
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,2,3,5,6,4] => 3
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,2,3,5,4,6] => 3
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,2,3,6,4,5] => 3
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,2,4,5,6,3] => 2
[1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,2,4,5,3,6] => 2
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 2
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 2
[1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,2,4,6,3,5] => 2
[1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,2,4,3,6,5] => 2
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,2,4,3,5,6] => 2
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,5,6,3,4] => 2
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,5,6,3,4] => 2
[1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,2,5,6,3,4] => 2
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,2,5,3,6,4] => 2
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,7,6,8] => ? = 5
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,8,6,7] => ? = 5
[1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,7,6,8] => ? = 5
[1,0,1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,8,6,7] => ? = 5
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,7,6,8] => ? = 5
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,8,6,7] => ? = 5
[1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,6,7,8,5] => ? = 4
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [1,2,3,4,6,7,5,8] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,6,8,5,7] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,6,8,5,7] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,6,8,5,7] => ? = 4
[1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,2,3,4,6,5,8,7] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,7,8,5,6] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,7,8,5,6] => ? = 4
[1,0,1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [1,2,3,4,7,8,5,6] => ? = 4
[1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,7,8,6] => ? = 5
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,7,6,8] => ? = 5
[1,0,1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [1,2,3,4,5,8,6,7] => ? = 5
[1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
[1,0,1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,2,3,4,5,6,8,7] => ? = 6
Description
The number of fixed points of a permutation smaller than its largest moved point.
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000989The number of final rises of a permutation. St000617The number of global maxima of a Dyck path. St000654The first descent of a permutation. St000100The number of linear extensions of a poset. St000256The number of parts from which one can substract 2 and still get an integer partition. St000732The number of double deficiencies of a permutation. St000307The number of rowmotion orbits of a poset. St001330The hat guessing number of a graph. St001481The minimal height of a peak of a Dyck path. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St000056The decomposition (or block) number of a permutation. St000221The number of strong fixed points of a permutation. St000335The difference of lower and upper interactions. St000990The first ascent of a permutation. St001194The injective dimension of A/AfA in the corresponding Nakayama algebra A when Af is the minimal faithful projective-injective left A-module St001201The grade of the simple module S0 in the special CNakayama algebra corresponding to the Dyck path. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000318The number of addable cells of the Ferrers diagram of an integer partition. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000123The difference in Coxeter length of a permutation and its image under the Simion-Schmidt map. St000223The number of nestings in the permutation. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St000744The length of the path to the largest entry in a standard Young tableau. St000735The last entry on the main diagonal of a standard tableau. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001685The number of distinct positions of the pattern letter 1 in occurrences of 132 in a permutation. St000035The number of left outer peaks of a permutation. St000329The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1. St001192The maximal dimension of Ext2A(S,A) for a simple module S over the corresponding Nakayama algebra A. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St000353The number of inner valleys of a permutation. St001231The number of simple modules that are non-projective and non-injective with the property that they have projective dimension equal to one and that also the Auslander-Reiten translates of the module and the inverse Auslander-Reiten translate of the module have the same projective dimension. St001234The number of indecomposable three dimensional modules with projective dimension one. St001715The number of non-records in a permutation. St000741The Colin de Verdière graph invariant. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001877Number of indecomposable injective modules with projective dimension 2. St000451The length of the longest pattern of the form k 1 2. St000455The second largest eigenvalue of a graph if it is integral. St000647The number of big descents of a permutation. St001964The interval resolution global dimension of a poset. St001645The pebbling number of a connected graph. St000994The number of cycle peaks and the number of cycle valleys of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!