searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000993
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => [2] => [2]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [3]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,1]
=> 2
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,1]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [4]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [2,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,1,1]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,1]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [2,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,1]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,1]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [5]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [3,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [2,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [2,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [2,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,1,1]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,1]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,1,1]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,1]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,1]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [3,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,1,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,1]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,1]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [2,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,1]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [2,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,1]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,1]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [6]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [4,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [3,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [3,1]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [3,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [2,2,1]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [2,2]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [2,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [2,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000617
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000617: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000617: Dyck paths ⟶ ℤResult quality: 86% ●values known / values provided: 99%●distinct values known / distinct values provided: 86%
Values
[1,0,1,0]
=> [1,1] => [2] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,2] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,0,1,0]
=> [2,1] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => [1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => [1,1] => [1,0,1,0]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1] => [11] => ?
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,2,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,2,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,3,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,2,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,2,1,2] => [4,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,2,1,1] => [3,2,2] => [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,3,1,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1,1,1] => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,2,2,1,1,1] => [2,2,3] => [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,2,1,1,1] => [1,1,1,1,3] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,1,1,2,1,1] => [1,3,1,2] => [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,2,1,1,1] => [1,2,1,3] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,2,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,2,1] => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,2,1,1] => [6,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,3,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,2,1,1,1] => [5,1,3] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,2,1] => [5,2,1] => [1,1,1,1,1,0,0,0,0,0,1,1,0,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,4,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,2,1,1,1,1] => [4,1,4] => [1,1,1,1,0,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,3,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1,1,1] => [3,1,5] => [1,1,1,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2,1,1,1,2] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,2,1,1,1] => [3,2,3] => [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,3,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1,1,1,1] => [2,1,6] => [1,1,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,3,1,1,1,1,1] => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,1,1,1,1,2,1] => [1,1,4,1,1] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,1,1,1,2,1,1] => [1,4,1,2] => [1,0,1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,2,1,1,1,1,1] => [1,1,1,5] => [1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,3,1,1] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,4,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,3,1,1,1,1,1] => [2,1,5] => [1,1,0,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,1,1,3,1] => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,1,1,2,1] => [8,1,1] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,3,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,3,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,1,3,1] => [7,1,1] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,3,1,1,1] => [3,1,3] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,3,1,1,1] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,3,1,1,1,1] => [3,1,4] => [1,1,1,0,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,1,4,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,3,1,2,1,3,1] => [1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 7
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,1,1,1,1,1,1,1,1,1] => [1,1,9] => ?
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,2,3,1,1,1,1] => [1,1,1,4] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,4,1] => [5,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 1
Description
The number of global maxima of a Dyck path.
Matching statistic: St000260
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 29%
Mp00252: Permutations —restriction⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 2% ●values known / values provided: 2%●distinct values known / distinct values provided: 29%
Values
[1,0,1,0]
=> [1,2] => [1] => ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2] => ([],2)
=> ? = 1 - 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,2] => ([],2)
=> ? = 2 - 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1] => ([(0,1)],2)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3] => ([],3)
=> ? = 1 - 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3] => ([],3)
=> ? = 1 - 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2] => ([(1,2)],3)
=> ? = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,3,2] => ([(1,2)],3)
=> ? = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,2] => ([(1,2)],3)
=> ? = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3] => ([(1,2)],3)
=> ? = 1 - 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,3] => ([(1,2)],3)
=> ? = 1 - 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4] => ([],4)
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4] => ([],4)
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3] => ([(2,3)],4)
=> ? = 1 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,4,3] => ([(2,3)],4)
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4] => ([(2,3)],4)
=> ? = 1 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,4] => ([(2,3)],4)
=> ? = 1 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4] => ([(2,3)],4)
=> ? = 1 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,4] => ([(2,3)],4)
=> ? = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 1 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 2 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 1 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ? = 2 - 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5] => ([],5)
=> ? = 1 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,5] => ([],5)
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,5,4] => [1,2,3,5,4] => ([(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,4,3,5] => ([(3,4)],5)
=> ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,4,3,5] => ([(3,4)],5)
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,4,3,6] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,4,6,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,3,2,4,5] => ([(3,4)],5)
=> ? = 1 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,3,2,4,5] => ([(3,4)],5)
=> ? = 4 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 1 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ? = 3 - 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,4,1,6] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,3,5,1,6] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [2,4,5,3,1,6] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [2,5,4,3,1,6] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,4,5,1,6] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [3,4,2,5,1,6] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,2,1,6] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,5,4,2,1,6] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0,1,0]
=> [4,3,2,5,1,6] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,3,5,2,1,6] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,5,3,2,1,6] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,6,1,7] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,4,6,5,1,7] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [2,3,5,4,6,1,7] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [2,3,5,6,4,1,7] => [2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [2,3,6,5,4,1,7] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [2,4,3,5,6,1,7] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,1,0,0,0,1,0]
=> [2,4,3,6,5,1,7] => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [2,4,5,3,6,1,7] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [2,4,5,6,3,1,7] => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,0,1,1,0,0,0,0,1,0]
=> [2,4,6,5,3,1,7] => [2,4,6,5,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,0,1,0,0,1,0]
=> [2,5,4,3,6,1,7] => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> [2,5,4,6,3,1,7] => [2,5,4,6,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [2,5,6,4,3,1,7] => [2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]
=> [2,6,5,4,3,1,7] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [3,2,4,5,6,1,7] => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [3,2,4,6,5,1,7] => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]
=> [3,2,5,4,6,1,7] => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,2,5,6,4,1,7] => [3,2,5,6,4,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [3,4,2,5,6,1,7] => [3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [3,4,2,6,5,1,7] => [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]
=> [3,4,5,2,6,1,7] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [3,4,5,6,2,1,7] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]
=> [3,4,6,5,2,1,7] => [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]
=> [3,5,4,2,6,1,7] => [3,5,4,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> [3,5,4,6,2,1,7] => [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]
=> [3,5,6,4,2,1,7] => [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!