Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> 1
Description
The greatest common divisor of the parts of the partition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [2,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> [1,1]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [2,1,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000326: Binary words ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
([],4)
=> [1,1,1,1]
=> 11110 => 01111 => 2 = 1 + 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 0011 => 3 = 2 + 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 011111 => 2 = 1 + 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([],6)
=> [1,1,1,1,1,1]
=> 1111110 => 0111111 => 2 = 1 + 1
([(4,5)],6)
=> [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([],7)
=> [1,1,1,1,1,1,1]
=> 11111110 => 01111111 => 2 = 1 + 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> 10111110 => 01111101 => 2 = 1 + 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => 01111001 => 2 = 1 + 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> 1101110 => 0111011 => 2 = 1 + 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> 1010110 => 0110101 => 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => 01111001 => 2 = 1 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> 1001010 => 0101001 => 2 = 1 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> 1000100 => 0010001 => 3 = 2 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> 110010 => 010011 => 2 = 1 + 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> 10000000000000110 => ? => ? = 1 + 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1 + 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> 1000000001110 => ? => ? = 1 + 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> 1000000000011110 => ? => ? = 1 + 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> 10000000000001110 => ? => ? = 1 + 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> 100000000110 => 011000000001 => ? = 1 + 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> 10000000000110 => ? => ? = 1 + 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1 + 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> 1000000000001110 => ? => ? = 1 + 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1 + 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> 100000000011110 => ? => ? = 1 + 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1 + 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> 100000000000000110 => ? => ? = 1 + 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1 + 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000297
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000297: Binary words ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [3]
=> 1000 => 1
([],4)
=> [1,1,1,1]
=> [4]
=> 10000 => 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([],5)
=> [1,1,1,1,1]
=> [5]
=> 100000 => 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 10100 => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> 1000000 => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> 100100 => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 101010 => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [3,3]
=> 11000 => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 101010 => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [7]
=> 10000000 => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [6,1]
=> 10000010 => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [5,2]
=> 1000100 => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [4,2,1]
=> 1001010 => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 1010110 => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,2,2]
=> 101100 => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 10011111111111110 => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> 1001111111110 => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> 1000111111110 => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1,1]
=> 1000011111111110 => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1,1]
=> 10001111111111110 => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1]
=> 10011111111110 => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1001111111111110 => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1]
=> 1000111111111110 => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> 100000111110 => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111110 => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1]
=> 100001111111110 => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111110 => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111111110 => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1001111111111110 => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> 1001111111110 => ? = 1
Description
The number of leading ones in a binary word.
Matching statistic: St000382
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [1,1,1,2,2] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [1,1,2,3] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [1,2,4] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [2,5] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [1,3,3] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,5,6,7,8,9,10,11,12],[2],[3],[4]]
=> ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14,15],[2],[3],[4],[5]]
=> ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3],[4]]
=> ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13],[2],[3]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15],[2],[3],[4]]
=> ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14],[2],[3],[4],[5]]
=> ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16,17],[2],[3]]
=> ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ? => ? = 1
Description
The first part of an integer composition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> 1110 => [3,1] => 1
([],4)
=> [1,1,1,1]
=> 11110 => [4,1] => 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => [1,1,2,1] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => [2,2] => 2
([],5)
=> [1,1,1,1,1]
=> 111110 => [5,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => [1,2,2,1] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => [2,1,1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => [1,1,1,2] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => [1,2,2,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => [1,1,1,2] => 2
([],6)
=> [1,1,1,1,1,1]
=> 1111110 => [6,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> 11100 => [3,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> 11111110 => [7,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => [1,2,4,1] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> 1101110 => [2,1,3,1] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> 1010110 => [1,1,1,1,2,1] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => [1,2,4,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> 1001010 => [1,2,1,1,1,1] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> 1000100 => [1,3,1,2] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> 110010 => [2,2,1,1] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> 10000000000000110 => ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> 1000000001110 => ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> 1000000000011110 => ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> 10000000000001110 => ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> 100000000110 => ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> 10000000000110 => ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> 1000000000001110 => ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> 100000111110 => [1,5,5,1] => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> 100000000011110 => ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> 100000000000000110 => ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1
Description
The last part of an integer composition.
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ?
=> ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ?
=> ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ?
=> ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ?
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ?
=> ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000745
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ?
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,5,6,7,8,9,10,11,12],[2],[3],[4]]
=> ?
=> ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14,15],[2],[3],[4],[5]]
=> ?
=> ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3],[4]]
=> ?
=> ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ?
=> ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13],[2],[3]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ?
=> ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15],[2],[3],[4]]
=> ?
=> ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ?
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ?
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14],[2],[3],[4],[5]]
=> ?
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ?
=> ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16,17],[2],[3]]
=> ?
=> ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ?
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ?
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000996
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000996: Permutations ⟶ ℤResult quality: 89% values known / values provided: 89%distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 1
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000657The smallest part of an integer composition. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000990The first ascent of a permutation. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001075The minimal size of a block of a set partition. St001571The Cartan determinant of the integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001316The domatic number of a graph. St001829The common independence number of a graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St001119The length of a shortest maximal path in a graph. St001322The size of a minimal independent dominating set in a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000310The minimal degree of a vertex of a graph. St000654The first descent of a permutation. St000090The variation of a composition. St000314The number of left-to-right-maxima of a permutation. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001845The number of join irreducibles minus the rank of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element.