Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001014
St001014: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 1
[1,1,0,0]
=> 2
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 2
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 3
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 2
[1,0,1,1,0,1,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> 4
[1,1,0,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 4
Description
Number of indecomposable injective modules with codominant dimension equal to the dominant dimension of the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001820
Mp00026: Dyck paths to ordered treeOrdered trees
Mp00047: Ordered trees to posetPosets
Mp00195: Posets order idealsLattices
St001820: Lattices ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 2 = 1 + 1
[1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 3 = 2 + 1
[1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3 = 2 + 1
[1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 3 = 2 + 1
[1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 4 = 3 + 1
[1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 1
[1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 2 + 1
[1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4 = 3 + 1
[1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 1 + 1
[1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 3 + 1
[1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 2 + 1
[1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 4 = 3 + 1
[1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 4 = 3 + 1
[1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 4 = 3 + 1
[1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 5 = 4 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 2 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 2 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 2 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 3 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 2 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 3 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 3 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 2 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 3 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,1),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,6)],18)
=> ? = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 3 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 3 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 3 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 2 + 1
[1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 1
[1,1,1,0,0,1,0,0,1,0]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2 + 1
[1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 3 + 1
[1,1,1,0,0,1,1,0,0,0]
=> [[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 + 1
[1,1,1,0,1,0,0,0,1,0]
=> [[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2 + 1
[1,1,1,0,1,0,0,1,0,0]
=> [[[[],[]],[]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 3 + 1
[1,1,1,0,1,0,1,0,0,0]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 3 + 1
[1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 5 = 4 + 1
[1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 1
[1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 1
[1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 5 = 4 + 1
[1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 5 = 4 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 6 = 5 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 1
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> 6 = 5 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 7 = 6 + 1
Description
The size of the image of the pop stack sorting operator. The pop stack sorting operator is defined by $Pop_L^\downarrow(x) = x\wedge\bigwedge\{y\in L\mid y\lessdot x\}$. This statistic returns the size of $Pop_L^\downarrow(L)\}$.
Matching statistic: St001720
Mp00026: Dyck paths to ordered treeOrdered trees
Mp00047: Ordered trees to posetPosets
Mp00195: Posets order idealsLattices
St001720: Lattices ⟶ ℤResult quality: 10% values known / values provided: 10%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [[]]
=> ([(0,1)],2)
=> ([(0,2),(2,1)],3)
=> 3 = 1 + 2
[1,0,1,0]
=> [[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 3 = 1 + 2
[1,1,0,0]
=> [[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 2 + 2
[1,0,1,0,1,0]
=> [[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8),(7,8),(8,1)],9)
=> 3 = 1 + 2
[1,0,1,1,0,0]
=> [[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4 = 2 + 2
[1,1,0,0,1,0]
=> [[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> 4 = 2 + 2
[1,1,0,1,0,0]
=> [[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 4 = 2 + 2
[1,1,1,0,0,0]
=> [[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 5 = 3 + 2
[1,0,1,0,1,0,1,0]
=> [[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(2,9),(2,10),(2,11),(3,7),(3,8),(3,11),(4,6),(4,8),(4,10),(5,6),(5,7),(5,9),(6,12),(6,15),(7,12),(7,13),(8,12),(8,14),(9,13),(9,15),(10,14),(10,15),(11,13),(11,14),(12,16),(13,16),(14,16),(15,16),(16,1)],17)
=> ? = 1 + 2
[1,0,1,0,1,1,0,0]
=> [[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 1 + 2
[1,0,1,1,0,0,1,0]
=> [[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 2 + 2
[1,0,1,1,0,1,0,0]
=> [[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1 + 2
[1,0,1,1,1,0,0,0]
=> [[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 5 = 3 + 2
[1,1,0,0,1,0,1,0]
=> [[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(2,10),(3,6),(3,8),(4,6),(4,7),(5,2),(5,7),(5,8),(6,11),(7,9),(7,11),(8,10),(8,11),(9,12),(10,12),(11,12),(12,1)],13)
=> ? = 1 + 2
[1,1,0,0,1,1,0,0]
=> [[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ? = 3 + 2
[1,1,0,1,0,0,1,0]
=> [[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(2,9),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7),(6,10),(7,10),(8,2),(8,10),(9,1),(10,9)],11)
=> ? = 1 + 2
[1,1,0,1,0,1,0,0]
=> [[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,2),(0,3),(0,4),(2,7),(2,8),(3,6),(3,8),(4,6),(4,7),(5,1),(6,9),(7,9),(8,9),(9,5)],10)
=> ? = 2 + 2
[1,1,0,1,1,0,0,0]
=> [[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 5 = 3 + 2
[1,1,1,0,0,0,1,0]
=> [[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9)
=> 5 = 3 + 2
[1,1,1,0,0,1,0,0]
=> [[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> 5 = 3 + 2
[1,1,1,0,1,0,0,0]
=> [[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> 5 = 3 + 2
[1,1,1,1,0,0,0,0]
=> [[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 6 = 4 + 2
[1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,1,0,0,1,0]
=> [[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 2 + 2
[1,0,1,0,1,1,0,1,0,0]
=> [[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,1,1,0,0,0]
=> [[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 2 + 2
[1,0,1,1,0,0,1,0,1,0]
=> [[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 2 + 2
[1,0,1,1,0,0,1,1,0,0]
=> [[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 3 + 2
[1,0,1,1,0,1,0,0,1,0]
=> [[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,0,1,1,0,1,0,1,0,0]
=> [[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 2 + 2
[1,0,1,1,0,1,1,0,0,0]
=> [[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2 + 2
[1,0,1,1,1,0,0,0,1,0]
=> [[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 3 + 2
[1,0,1,1,1,0,0,1,0,0]
=> [[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 3 + 2
[1,0,1,1,1,0,1,0,0,0]
=> [[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2 + 2
[1,0,1,1,1,1,0,0,0,0]
=> [[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 2
[1,1,0,0,1,0,1,0,1,0]
=> [[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,1,0,0,1,0,1,1,0,0]
=> [[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 2 + 2
[1,1,0,0,1,1,0,0,1,0]
=> [[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,9),(2,11),(3,8),(3,10),(4,12),(4,13),(5,3),(5,12),(5,14),(6,2),(6,13),(6,14),(7,18),(8,16),(9,17),(10,7),(10,16),(11,7),(11,17),(12,8),(12,15),(13,9),(13,15),(14,10),(14,11),(14,15),(15,16),(15,17),(16,18),(17,18),(18,1)],19)
=> ? = 3 + 2
[1,1,0,0,1,1,0,1,0,0]
=> [[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2 + 2
[1,1,0,0,1,1,1,0,0,0]
=> [[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 2
[1,1,0,1,0,0,1,0,1,0]
=> [[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ?
=> ? = 1 + 2
[1,1,0,1,0,0,1,1,0,0]
=> [[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,11),(3,7),(3,8),(4,10),(4,13),(5,10),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,1),(10,2),(10,14),(11,9),(12,7),(12,14),(13,8),(13,14),(14,11),(14,15),(15,9)],16)
=> ? = 2 + 2
[1,1,0,1,0,1,0,0,1,0]
=> [[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,3),(0,4),(0,5),(0,6),(2,7),(3,8),(3,9),(3,10),(4,10),(4,12),(4,13),(5,9),(5,11),(5,13),(6,8),(6,11),(6,12),(7,1),(8,14),(8,15),(9,14),(9,16),(10,15),(10,16),(11,14),(11,17),(12,15),(12,17),(13,16),(13,17),(14,18),(15,18),(16,18),(17,2),(17,18),(18,7)],19)
=> ? = 2 + 2
[1,1,0,1,0,1,0,1,0,0]
=> [[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(2,10),(2,11),(2,12),(3,8),(3,9),(3,12),(4,7),(4,9),(4,11),(5,7),(5,8),(5,10),(6,1),(7,13),(7,16),(8,13),(8,14),(9,13),(9,15),(10,14),(10,16),(11,15),(11,16),(12,14),(12,15),(13,17),(14,17),(15,17),(16,17),(17,6)],18)
=> ? = 2 + 2
[1,1,0,1,0,1,1,0,0,0]
=> [[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 3 + 2
[1,1,0,1,1,0,0,0,1,0]
=> [[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 3 + 2
[1,1,0,1,1,0,0,1,0,0]
=> [[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 2 + 2
[1,1,0,1,1,0,1,0,0,0]
=> [[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 3 + 2
[1,1,0,1,1,1,0,0,0,0]
=> [[[],[[[]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 2
[1,1,1,0,0,0,1,0,1,0]
=> [[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(2,7),(2,8),(3,2),(3,10),(3,11),(4,9),(4,13),(5,9),(5,12),(6,3),(6,12),(6,13),(7,15),(8,15),(9,14),(10,7),(10,16),(11,8),(11,16),(12,10),(12,14),(13,11),(13,14),(14,16),(15,1),(16,15)],17)
=> ? = 2 + 2
[1,1,1,0,0,0,1,1,0,0]
=> [[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,2),(4,10),(5,3),(5,7),(6,4),(6,7),(7,8),(7,10),(8,11),(9,12),(10,9),(10,11),(11,12),(12,1)],13)
=> ? = 4 + 2
[1,1,1,0,0,1,0,0,1,0]
=> [[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,4),(0,5),(0,6),(1,11),(3,10),(3,12),(4,7),(4,8),(5,7),(5,9),(6,3),(6,8),(6,9),(7,14),(8,12),(8,14),(9,10),(9,14),(10,13),(11,2),(12,1),(12,13),(13,11),(14,13)],15)
=> ? = 2 + 2
[1,1,1,0,0,1,0,1,0,0]
=> [[[[]],[],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,4),(0,6),(1,10),(1,11),(3,8),(3,9),(4,7),(4,9),(5,2),(6,1),(6,7),(6,8),(7,10),(7,13),(8,11),(8,13),(9,13),(10,12),(11,12),(12,5),(13,12)],14)
=> ? = 3 + 2
[1,1,1,0,0,1,1,0,0,0]
=> [[[[]],[[]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(0,5),(0,6),(2,9),(3,8),(4,1),(5,3),(5,7),(6,2),(6,7),(7,8),(7,9),(8,10),(9,10),(10,4)],11)
=> ? = 4 + 2
[1,1,1,0,1,0,0,0,1,0]
=> [[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(0,5),(2,11),(3,7),(3,8),(4,8),(4,9),(5,7),(5,9),(6,2),(6,10),(7,12),(8,12),(9,6),(9,12),(10,11),(11,1),(12,10)],13)
=> ? = 2 + 2
[1,1,1,0,1,0,0,1,0,0]
=> [[[[],[]],[]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(0,3),(0,4),(0,5),(2,9),(3,8),(3,10),(4,7),(4,10),(5,7),(5,8),(6,1),(7,11),(8,11),(9,6),(10,2),(10,11),(11,9)],12)
=> ? = 3 + 2
[1,1,1,0,1,0,1,0,0,0]
=> [[[[],[],[]]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,3)],6)
=> ([(0,2),(0,3),(0,4),(2,8),(2,9),(3,7),(3,9),(4,7),(4,8),(5,1),(6,5),(7,10),(8,10),(9,10),(10,6)],11)
=> ? = 3 + 2
[1,1,1,0,1,1,0,0,0,0]
=> [[[[],[[]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 6 = 4 + 2
[1,1,1,1,0,0,0,0,1,0]
=> [[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,3),(0,6),(2,10),(3,7),(4,5),(4,9),(5,2),(5,8),(6,4),(6,7),(7,9),(8,10),(9,8),(10,1)],11)
=> ? = 4 + 2
[1,1,1,1,0,0,0,1,0,0]
=> [[[[[]]],[]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(0,3),(0,6),(2,8),(3,7),(4,2),(4,9),(5,1),(6,4),(6,7),(7,9),(8,5),(9,8)],10)
=> ? = 4 + 2
[1,1,1,1,0,0,1,0,0,0]
=> [[[[[]],[]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(0,3),(0,6),(1,8),(3,7),(4,2),(5,4),(6,1),(6,7),(7,8),(8,5)],9)
=> 6 = 4 + 2
[1,1,1,1,0,1,0,0,0,0]
=> [[[[[],[]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(0,2),(0,3),(2,7),(3,7),(4,5),(5,1),(6,4),(7,6)],8)
=> 6 = 4 + 2
[1,1,1,1,1,0,0,0,0,0]
=> [[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 7 = 5 + 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ?
=> ? = 1 + 2
[1,1,1,1,1,0,1,0,0,0,0,0]
=> [[[[[[],[]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([(0,2),(0,3),(2,8),(3,8),(4,6),(5,4),(6,1),(7,5),(8,7)],9)
=> 7 = 5 + 2
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> 8 = 6 + 2
Description
The minimal length of a chain of small intervals in a lattice. An interval $[a, b]$ is small if $b$ is a join of elements covering $a$.