Processing math: 8%

Your data matches 74 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St000183
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000183: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> [2]
=> []
=> 0
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> 0
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1]
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2]
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2]
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1]
=> 1
Description
The side length of the Durfee square of an integer partition. Given a partition λ=(λ1,,λn), the Durfee square is the largest partition (ss) whose diagram fits inside the diagram of λ. In symbols, s=max. This is also known as the Frobenius rank.
Matching statistic: St001031
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001031: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 0
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 1
Description
The height of the bicoloured Motzkin path associated with the Dyck path.
Matching statistic: St001175
Mp00047: Ordered trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001175: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 97%distinct values known / distinct values provided: 67%
Values
[[]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? = 0 - 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0 = 1 - 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? = 0 - 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0 = 1 - 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0 = 1 - 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0 = 1 - 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? = 0 - 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0 = 1 - 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0 = 1 - 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0 = 1 - 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> [3,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0 = 1 - 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0 = 1 - 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0 = 1 - 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? = 0 - 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 0 = 1 - 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> [4,2]
=> [2]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> [5,1]
=> [1]
=> 0 = 1 - 1
[[[],[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,5),(5,4)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 0 = 1 - 1
[[[],[],[[]]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[],[[]],[]]]
=> ([(0,5),(1,5),(2,3),(3,5),(5,4)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[],[[],[]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 0 = 1 - 1
[[[[[[]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? = 0 - 1
[[[[[[[]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> [7]
=> []
=> ? = 0 - 1
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> [8]
=> []
=> ? = 0 - 1
Description
The size of a partition minus the hook length of the base cell. This is, the number of boxes in the diagram of a partition that are neither in the first row nor in the first column.
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00318: Graphs dual on componentsGraphs
St001393: Graphs ⟶ ℤResult quality: 67% values known / values provided: 94%distinct values known / distinct values provided: 67%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 0
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 0
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(3,7),(3,8),(4,6),(4,8),(5,6),(5,7)],9)
=> ? = 2
[[[],[],[],[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 1
[[[],[],[[]],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 1
[[[],[[]],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 1
[[[[]],[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,6),(6,5)],7)
=> ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,5),(4,7),(5,6)],8)
=> ? = 1
[[[[[[[[]]]]]]]]
=> ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8)
=> ([],8)
=> ?
=> ? = 0
[[],[[[],[]],[[],[]]]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[],[[],[]]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[]],[[[],[]],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[],[[],[]]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[]],[[],[]]]
=> ([(0,7),(1,5),(2,5),(3,6),(4,6),(5,8),(6,7),(7,8)],9)
=> ([(1,5),(1,7),(1,8),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,6),(3,7),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
[[[[],[]],[[],[]]],[]]
=> ([(0,7),(1,6),(2,6),(3,5),(4,5),(5,8),(6,8),(8,7)],9)
=> ([(1,8),(2,3),(2,6),(2,7),(2,8),(3,4),(3,5),(3,8),(4,5),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ?
=> ? = 1
Description
The induced matching number of a graph. An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00117: Graphs Ore closureGraphs
St001333: Graphs ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 0
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 0
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 0
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 0
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[]],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[],[[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[]],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[],[[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[[[]],[[],[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[],[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[[]]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[[]],[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
[[[],[],[]],[[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1
Description
The cardinality of a minimal edge-isolating set of a graph. Let \mathcal F be a set of graphs. A set of vertices S is \mathcal F-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of S does not contain any graph in \mathcal F. This statistic returns the cardinality of the smallest isolating set when \mathcal F contains only the graph with one edge.
Mp00047: Ordered trees to posetPosets
Mp00198: Posets incomparability graphGraphs
Mp00117: Graphs Ore closureGraphs
St001261: Graphs ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
[[]]
=> ([(0,1)],2)
=> ([],2)
=> ([],2)
=> 1 = 0 + 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> ([(1,2)],3)
=> 2 = 1 + 1
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ([],3)
=> 1 = 0 + 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([],4)
=> 1 = 0 + 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> ([(3,4)],5)
=> 2 = 1 + 1
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([],5)
=> 1 = 0 + 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 1 + 1
[[],[],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[],[],[[]]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[],[[]],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[],[[],[]]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[],[[[]]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[]],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[],[]],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[[]]],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[],[],[]]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[],[[]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[],[[[]],[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[]],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[]],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[]],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[]],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[],[]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[[]]],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[],[]],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[[]]],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[],[],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[],[[]]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[],[[[]],[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[],[],[[]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[],[[]],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[],[[],[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[],[[[]]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2 + 1
[[[]],[[],[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[[]]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[],[],[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[],[[]]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[]],[[[]],[]]]
=> ([(0,5),(1,3),(2,4),(3,6),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]]],[],[],[]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[]],[],[[]]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]]],[],[[]]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[]],[[]],[]]
=> ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]]],[[]],[]]
=> ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[]],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[]],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]]],[[],[]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]]],[[[]]]]
=> ([(0,5),(1,4),(2,6),(3,6),(4,2),(5,3)],7)
=> ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[],[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[[]]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[[]],[]],[],[]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
[[[],[],[]],[[]]]
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(6,5)],7)
=> ([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 1 + 1
Description
The Castelnuovo-Mumford regularity of a graph.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000260: Graphs ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 67%
Values
[[]]
=> [1,0]
=> [1] => ([],1)
=> 0
[[],[]]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[[[]]]
=> [1,1,0,0]
=> [2] => ([],2)
=> ? = 0
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? = 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [3] => ([],3)
=> ? = 0
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? = 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? = 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? = 0
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? = 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? = 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? = 1
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[[],[],[]]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[],[[]]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? = 1
[[[[[]],[]]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[[[],[]]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? = 0
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[],[[[]]]]]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[[],[[]]]]]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[],[[[[[]]]]]]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? = 1
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[]],[[]],[[]]]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[[[]],[[],[[]]]]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[]],[[[[]]]]]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? = 1
[[[],[]],[],[[]]]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[]]],[],[[]]]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[],[]],[[[]]]]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[]]],[[[]]]]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? = 1
[[[],[],[]],[[]]]
=> [1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[],[[]]],[[]]]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[]],[]],[[]]]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[],[]]],[[]]]
=> [1,1,1,0,1,0,0,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1
[[[[[]]]],[[]]]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 1
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00013: Binary trees to posetPosets
Mp00198: Posets incomparability graphGraphs
St000455: Graphs ⟶ ℤResult quality: 33% values known / values provided: 55%distinct values known / distinct values provided: 33%
Values
[[]]
=> [.,.]
=> ([],1)
=> ([],1)
=> ? = 0 - 1
[[],[]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> ? = 1 - 1
[[[]]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> ? = 0 - 1
[[],[],[]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
[[],[[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 0 = 1 - 1
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
[[[],[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 1 - 1
[[[[]]]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 0 - 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0 = 1 - 1
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 0 = 1 - 1
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 1 - 1
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 0 - 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 - 1
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 0 = 1 - 1
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[],[],[],[]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[],[],[[]]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[],[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
[[[],[[],[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[],[[[]]]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[]],[],[]]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[]],[[]]]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 0 = 1 - 1
[[[[],[]],[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[[]]],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[],[],[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[],[[]]]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 0 = 1 - 1
[[[[[]],[]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[[],[]]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 1 - 1
[[[[[[]]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 0 - 1
[[],[],[],[],[],[]]
=> [[[[[[.,.],.],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 1 - 1
[[],[],[],[],[[]]]
=> [[[[[.,.],.],.],.],[.,.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[],[],[[]],[]]
=> [[[[[.,.],.],.],[.,.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[],[],[[],[]]]
=> [[[[.,.],.],.],[[.,.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[],[[[]]]]
=> [[[[.,.],.],.],[.,[.,.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[]],[],[]]
=> [[[[[.,.],.],[.,.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[],[[]],[[]]]
=> [[[[.,.],.],[.,.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[],[[],[]],[]]
=> [[[[.,.],.],[[.,.],.]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[[]]],[]]
=> [[[[.,.],.],[.,[.,.]]],.]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> ([(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[],[],[]]]
=> [[[.,.],.],[[[.,.],.],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[],[[]]]]
=> [[[.,.],.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 - 1
[[],[],[[[]],[]]]
=> [[[.,.],.],[[.,[.,.]],.]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[[],[]]]]
=> [[[.,.],.],[.,[[.,.],.]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[],[[[[]]]]]
=> [[[.,.],.],[.,[.,[.,.]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 0 = 1 - 1
[[],[[]],[],[],[]]
=> [[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([(4,5)],6)
=> 0 = 1 - 1
[[],[[]],[],[[]]]
=> [[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[]],[[]],[]]
=> [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[]],[[],[]]]
=> [[[.,.],[.,.]],[[.,.],.]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 - 1
[[],[[]],[[[]]]]
=> [[[.,.],[.,.]],[.,[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 1 - 1
[[],[[],[]],[],[]]
=> [[[[.,.],[[.,.],.]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[[]]],[],[]]
=> [[[[.,.],[.,[.,.]]],.],.]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> ([(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[],[]],[[]]]
=> [[[.,.],[[.,.],.]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[[]]],[[]]]
=> [[[.,.],[.,[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[],[],[]],[]]
=> [[[.,.],[[[.,.],.],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[],[[]]],[]]
=> [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[[]],[]],[]]
=> [[[.,.],[[.,[.,.]],.]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[[],[]]],[]]
=> [[[.,.],[.,[[.,.],.]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[[[]]]],[]]
=> [[[.,.],[.,[.,[.,.]]]],.]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[],[],[],[]]]
=> [[.,.],[[[[.,.],.],.],.]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 0 = 1 - 1
[[],[[],[],[[]]]]
=> [[.,.],[[[.,.],.],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[],[[]],[]]]
=> [[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[],[[],[]]]]
=> [[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[],[[[]]]]]
=> [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[[]],[[]]]]
=> [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[],[[[],[[]]]]]
=> [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 1 - 1
[[[]],[],[],[],[]]
=> [[[[[.,[.,.]],.],.],.],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 1 - 1
Description
The second largest eigenvalue of a graph if it is integral. This statistic is undefined if the second largest eigenvalue of the graph is not integral. Chapter 4 of [1] provides lots of context.
Matching statistic: St001695
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001695: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 52%distinct values known / distinct values provided: 33%
Values
[[]]
=> [1,0]
=> []
=> []
=> ? = 0 - 1
[[],[]]
=> [1,0,1,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[]]]
=> [1,1,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[1,2],[3]]
=> 0 = 1 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1],[2]]
=> 0 = 1 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0 = 1 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0 = 1 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0 = 1 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0 = 1 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0 = 1 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0 = 1 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[1,2,3],[4]]
=> 0 = 1 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[1,2],[3]]
=> 0 = 1 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1],[2]]
=> 0 = 1 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 1 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> ? = 1 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> ? = 1 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0 = 1 - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0 = 1 - 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0 = 1 - 1
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0 = 1 - 1
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0 = 1 - 1
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0 = 1 - 1
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0 = 1 - 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[1,2,3],[4]]
=> 0 = 1 - 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]]
=> ? = 1 - 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> ? = 1 - 1
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 1 - 1
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> ? = 1 - 1
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]]
=> ? = 1 - 1
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]]
=> ? = 1 - 1
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]]
=> ? = 1 - 1
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]]
=> ? = 1 - 1
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> ? = 1 - 1
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]]
=> ? = 1 - 1
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]]
=> ? = 1 - 1
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]]
=> ? = 1 - 1
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> ? = 1 - 1
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]]
=> ? = 1 - 1
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> ? = 1 - 1
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> ? = 1 - 1
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> ? = 1 - 1
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> ? = 1 - 1
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> ? = 1 - 1
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> ? = 1 - 1
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10]]
=> ? = 1 - 1
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> ? = 1 - 1
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10]]
=> ? = 1 - 1
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> ? = 1 - 1
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> ? = 1 - 1
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> ? = 1 - 1
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]]
=> ? = 1 - 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]]
=> ? = 1 - 1
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> ? = 1 - 1
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> ? = 1 - 1
Description
The natural comajor index of a standard Young tableau. A natural descent of a standard tableau T is an entry i such that i+1 appears in a higher row than i in English notation. The natural comajor index of a tableau of size n with natural descent set D is then \sum_{d\in D} n-d.
Matching statistic: St001698
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St001698: Standard tableaux ⟶ ℤResult quality: 33% values known / values provided: 52%distinct values known / distinct values provided: 33%
Values
[[]]
=> [1,0]
=> []
=> []
=> ? = 0 - 1
[[],[]]
=> [1,0,1,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[]]]
=> [1,1,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [2,1]
=> [[1,2],[3]]
=> 0 = 1 - 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1]
=> [[1],[2]]
=> 0 = 1 - 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0 = 1 - 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0 = 1 - 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0 = 1 - 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0 = 1 - 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0 = 1 - 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0 = 1 - 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [[1,2,3],[4]]
=> 0 = 1 - 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [[1,2],[3]]
=> 0 = 1 - 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [[1],[2]]
=> 0 = 1 - 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [[1,2]]
=> 0 = 1 - 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [[1]]
=> 0 = 1 - 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10]]
=> ? = 1 - 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8]]
=> 0 = 1 - 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> 0 = 1 - 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9]]
=> ? = 1 - 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [[1,2,3],[4,5,6],[7],[8]]
=> 0 = 1 - 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [[1,2,3,4],[5,6],[7],[8]]
=> 0 = 1 - 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> 0 = 1 - 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> 0 = 1 - 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> 0 = 1 - 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> 0 = 1 - 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 0 = 1 - 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 0 = 1 - 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [[1,2,3,4],[5,6,7],[8,9]]
=> ? = 1 - 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [[1,2,3],[4,5,6],[7,8]]
=> 0 = 1 - 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [[1,2,3,4],[5,6],[7,8]]
=> 0 = 1 - 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> 0 = 1 - 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 0 = 1 - 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [[1,2,3,4],[5,6,7],[8]]
=> 0 = 1 - 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [[1,2,3,4],[5,6,7]]
=> 0 = 1 - 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> 0 = 1 - 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 0 = 1 - 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> 0 = 1 - 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> 0 = 1 - 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> 0 = 1 - 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> [[1,2,3,4],[5]]
=> 0 = 1 - 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> [[1,2,3,4]]
=> 0 = 1 - 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> 0 = 1 - 1
[[[],[],[[]]]]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 0 = 1 - 1
[[[],[[]],[]]]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 0 = 1 - 1
[[[],[[],[]]]]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 0 = 1 - 1
[[[],[[[]]]]]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1]
=> [[1],[2],[3]]
=> 0 = 1 - 1
[[[[]],[],[]]]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [[1,2,3],[4,5]]
=> 0 = 1 - 1
[[[[]],[[]]]]
=> [1,1,1,0,0,1,1,0,0,0]
=> [2,2]
=> [[1,2],[3,4]]
=> 0 = 1 - 1
[[[[],[]],[]]]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1]
=> [[1,2,3],[4]]
=> 0 = 1 - 1
[[[[[]]],[]]]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> [[1,2,3]]
=> 0 = 1 - 1
[[[[[[]]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? = 0 - 1
[[],[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]]
=> ? = 1 - 1
[[],[],[],[],[[]]]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[],[[]],[]]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[],[[],[]]]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[],[[[]]]]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[]],[],[]]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]]
=> ? = 1 - 1
[[],[],[[]],[[]]]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[[],[]],[]]
=> [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]]
=> ? = 1 - 1
[[],[],[[[]]],[]]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> [5,2,2,2,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[],[],[]]]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]]
=> ? = 1 - 1
[[],[],[[],[[]]]]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11]]
=> ? = 1 - 1
[[],[],[[[]],[]]]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,2,2,2,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11]]
=> ? = 1 - 1
[[],[],[[[],[]]]]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [3,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10]]
=> ? = 1 - 1
[[],[],[[[[]]]]]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,2,2,2,1]
=> [[1,2],[3,4],[5,6],[7,8],[9]]
=> ? = 1 - 1
[[],[[]],[],[],[]]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]]
=> ? = 1 - 1
[[],[[]],[],[[]]]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [4,4,3,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]]
=> ? = 1 - 1
[[],[[]],[[]],[]]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> [5,3,3,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]]
=> ? = 1 - 1
[[],[[]],[[],[]]]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [4,3,3,1,1]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]]
=> ? = 1 - 1
[[],[[]],[[[]]]]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [3,3,3,1,1]
=> [[1,2,3],[4,5,6],[7,8,9],[10],[11]]
=> ? = 1 - 1
[[],[[],[]],[],[]]
=> [1,0,1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]]
=> ? = 1 - 1
[[],[[[]]],[],[]]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]]
=> ? = 1 - 1
[[],[[],[]],[[]]]
=> [1,0,1,1,0,1,0,0,1,1,0,0]
=> [4,4,2,1,1]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]]
=> ? = 1 - 1
[[],[[[]]],[[]]]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [4,4,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11]]
=> ? = 1 - 1
[[],[[],[],[]],[]]
=> [1,0,1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,1]
=> [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]]
=> ? = 1 - 1
[[],[[],[[]]],[]]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> [5,2,2,1,1]
=> [[1,2,3,4,5],[6,7],[8,9],[10],[11]]
=> ? = 1 - 1
[[],[[[]],[]],[]]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,1,1]
=> [[1,2,3,4,5],[6,7,8],[9],[10],[11]]
=> ? = 1 - 1
[[],[[[],[]]],[]]
=> [1,0,1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,1,1]
=> [[1,2,3,4,5],[6,7],[8],[9],[10]]
=> ? = 1 - 1
[[],[[[[]]]],[]]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [5,1,1,1,1]
=> [[1,2,3,4,5],[6],[7],[8],[9]]
=> ? = 1 - 1
[[],[[],[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11]]
=> ? = 1 - 1
[[],[[],[],[[]]]]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> [3,3,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9],[10]]
=> ? = 1 - 1
[[],[[],[[]],[]]]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> [4,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9],[10]]
=> ? = 1 - 1
[[],[[],[[],[]]]]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [3,2,2,1,1]
=> [[1,2,3],[4,5],[6,7],[8],[9]]
=> ? = 1 - 1
[[],[[[]],[],[]]]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,1,1]
=> [[1,2,3,4],[5,6,7],[8],[9],[10]]
=> ? = 1 - 1
[[],[[[]],[[]]]]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [3,3,1,1,1]
=> [[1,2,3],[4,5,6],[7],[8],[9]]
=> ? = 1 - 1
[[],[[[],[]],[]]]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,1,1]
=> [[1,2,3,4],[5,6],[7],[8],[9]]
=> ? = 1 - 1
[[[]],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]]
=> ? = 1 - 1
[[[]],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2]
=> [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]]
=> ? = 1 - 1
[[[]],[],[[]],[]]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2]
=> [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]]
=> ? = 1 - 1
[[[]],[],[[],[]]]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> ? = 1 - 1
[[[]],[],[[[]]]]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11]]
=> ? = 1 - 1
Description
The comajor index of a standard tableau minus the weighted size of its shape.
The following 64 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001699The major index of a standard tableau minus the weighted size of its shape. St001712The number of natural descents of a standard Young tableau. St000862The number of parts of the shifted shape of a permutation. St001665The number of pure excedances of a permutation. St001624The breadth of a lattice. St001741The largest integer such that all patterns of this size are contained in the permutation. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000259The diameter of a connected graph. St000486The number of cycles of length at least 3 of a permutation. St000535The rank-width of a graph. St000671The maximin edge-connectivity for choosing a subgraph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001174The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(x^n). St001192The maximal dimension of Ext_A^2(S,A) for a simple module S over the corresponding Nakayama algebra A. St001271The competition number of a graph. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001340The cardinality of a minimal non-edge isolating set of a graph. St001349The number of different graphs obtained from the given graph by removing an edge. St001354The number of series nodes in the modular decomposition of a graph. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001512The minimum rank of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000258The burning number of a graph. St000299The number of nonisomorphic vertex-induced subtrees. St000374The number of exclusive right-to-left minima of a permutation. St000452The number of distinct eigenvalues of a graph. St000453The number of distinct Laplacian eigenvalues of a graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000918The 2-limited packing number of a graph. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000955Number of times one has Ext^i(D(A),A)>0 for i>0 for the corresponding LNakayama algebra. St000991The number of right-to-left minima of a permutation. St001093The detour number of a graph. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001315The dissociation number of a graph. St001318The number of vertices of the largest induced subforest with the same number of connected components of a graph. St001321The number of vertices of the largest induced subforest of a graph. St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St001471The magnitude of a Dyck path. St001530The depth of a Dyck path. St001674The number of vertices of the largest induced star graph in the graph. St001734The lettericity of a graph. St000451The length of the longest pattern of the form k 1 2. St001195The global dimension of the algebra A/AfA of the corresponding Nakayama algebra A with minimal left faithful projective-injective module Af. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001498The normalised height of a Nakayama algebra with magnitude 1. St001704The size of the largest multi-subset-intersection of the deck of a graph with the deck of another graph. St000264The girth of a graph, which is not a tree. St000929The constant term of the character polynomial of an integer partition. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001568The smallest positive integer that does not appear twice in the partition. St001570The minimal number of edges to add to make a graph Hamiltonian. St001060The distinguishing index of a graph. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001205The number of non-simple indecomposable projective-injective modules of the algebra eAe in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001165Number of simple modules with even projective dimension in the corresponding Nakayama algebra. St001488The number of corners of a skew partition.