searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001033
Mp00178: Binary words —to composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001033: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001033: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
0 => [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
1 => [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
00 => [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
01 => [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 0
10 => [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0
11 => [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
000 => [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
001 => [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
010 => [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
100 => [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 1
110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1
111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 2
0000 => [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
0001 => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
0010 => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
0011 => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
0100 => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
0101 => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
0110 => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
0111 => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 1
1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 1
1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
00000 => [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
00001 => [5,1] => [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
00010 => [4,2] => [1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> 0
00011 => [4,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
00100 => [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 0
00101 => [3,2,1] => [1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
00110 => [3,1,2] => [1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0]
=> 3
00111 => [3,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> 4
01000 => [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 0
01001 => [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2
01010 => [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> 2
01011 => [2,2,1,1] => [1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 4
01100 => [2,1,3] => [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 2
01101 => [2,1,2,1] => [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3
01110 => [2,1,1,2] => [1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> 3
01111 => [2,1,1,1,1] => [1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> 6
10000 => [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 0
10001 => [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
10010 => [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 1
10011 => [1,3,1,1] => [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 4
Description
The normalized area of the parallelogram polyomino associated with the Dyck path.
The area of the smallest parallelogram polyomino equals the semilength of the Dyck path. This statistic is therefore the area of the parallelogram polyomino minus the semilength of the Dyck path.
The area itself is equidistributed with [[St001034]] and with [[St000395]].
Matching statistic: St000290
Mp00104: Binary words —reverse⟶ Binary words
Mp00105: Binary words —complement⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Mp00105: Binary words —complement⟶ Binary words
Mp00268: Binary words —zeros to flag zeros⟶ Binary words
St000290: Binary words ⟶ ℤResult quality: 99% ●values known / values provided: 99%●distinct values known / distinct values provided: 100%
Values
0 => 0 => 1 => 1 => 0
1 => 1 => 0 => 0 => 0
00 => 00 => 11 => 11 => 0
01 => 10 => 01 => 00 => 0
10 => 01 => 10 => 01 => 0
11 => 11 => 00 => 10 => 1
000 => 000 => 111 => 111 => 0
001 => 100 => 011 => 000 => 0
010 => 010 => 101 => 001 => 0
011 => 110 => 001 => 110 => 2
100 => 001 => 110 => 011 => 0
101 => 101 => 010 => 100 => 1
110 => 011 => 100 => 101 => 1
111 => 111 => 000 => 010 => 2
0000 => 0000 => 1111 => 1111 => 0
0001 => 1000 => 0111 => 0000 => 0
0010 => 0100 => 1011 => 0001 => 0
0011 => 1100 => 0011 => 1110 => 3
0100 => 0010 => 1101 => 0011 => 0
0101 => 1010 => 0101 => 1100 => 2
0110 => 0110 => 1001 => 1101 => 2
0111 => 1110 => 0001 => 0010 => 3
1000 => 0001 => 1110 => 0111 => 0
1001 => 1001 => 0110 => 1000 => 1
1010 => 0101 => 1010 => 1001 => 1
1011 => 1101 => 0010 => 0110 => 3
1100 => 0011 => 1100 => 1011 => 1
1101 => 1011 => 0100 => 0100 => 2
1110 => 0111 => 1000 => 0101 => 2
1111 => 1111 => 0000 => 1010 => 4
00000 => 00000 => 11111 => 11111 => 0
00001 => 10000 => 01111 => 00000 => 0
00010 => 01000 => 10111 => 00001 => 0
00011 => 11000 => 00111 => 11110 => 4
00100 => 00100 => 11011 => 00011 => 0
00101 => 10100 => 01011 => 11100 => 3
00110 => 01100 => 10011 => 11101 => 3
00111 => 11100 => 00011 => 00010 => 4
01000 => 00010 => 11101 => 00111 => 0
01001 => 10010 => 01101 => 11000 => 2
01010 => 01010 => 10101 => 11001 => 2
01011 => 11010 => 00101 => 00110 => 4
01100 => 00110 => 11001 => 11011 => 2
01101 => 10110 => 01001 => 00100 => 3
01110 => 01110 => 10001 => 00101 => 3
01111 => 11110 => 00001 => 11010 => 6
10000 => 00001 => 11110 => 01111 => 0
10001 => 10001 => 01110 => 10000 => 1
10010 => 01001 => 10110 => 10001 => 1
10011 => 11001 => 00110 => 01110 => 4
=> => => => ? = 0
01010101010 => 01010101010 => 10101010101 => 00110011001 => ? = 12
Description
The major index of a binary word.
This is the sum of the positions of descents, i.e., a one followed by a zero.
For words of length $n$ with $a$ zeros, the generating function for the major index is the $q$-binomial coefficient $\binom{n}{a}_q$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!