Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 52 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00199: Dyck paths prime Dyck pathDyck paths
St001033: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> 5
Description
The normalized area of the parallelogram polyomino associated with the Dyck path. The area of the smallest parallelogram polyomino equals the semilength of the Dyck path. This statistic is therefore the area of the parallelogram polyomino minus the semilength of the Dyck path. The area itself is equidistributed with [[St001034]] and with [[St000395]].
Mp00028: Dyck paths reverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000394: Dyck paths ⟶ ℤResult quality: 86% values known / values provided: 97%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 11
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0,1,0]
=> ? = 12
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? = 16
[]
=> []
=> []
=> []
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,1,0,0,0,0,0]
=> ? = 18
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 19
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> ? = 20
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 20
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0,0,0]
=> ? = 24
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0]
=> ? = 24
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Matching statistic: St001176
Mp00233: Dyck paths skew partitionSkew partitions
Mp00187: Skew partitions conjugateSkew partitions
Mp00186: Skew partitions dominating partitionInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 64% values known / values provided: 87%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [[1],[]]
=> [[1],[]]
=> [1]
=> 0
[1,0,1,0]
=> [[1,1],[]]
=> [[2],[]]
=> [2]
=> 0
[1,1,0,0]
=> [[2],[]]
=> [[1,1],[]]
=> [1,1]
=> 1
[1,0,1,0,1,0]
=> [[1,1,1],[]]
=> [[3],[]]
=> [3]
=> 0
[1,0,1,1,0,0]
=> [[2,1],[]]
=> [[2,1],[]]
=> [2,1]
=> 1
[1,1,0,0,1,0]
=> [[2,2],[1]]
=> [[2,2],[1]]
=> [2,1]
=> 1
[1,1,0,1,0,0]
=> [[3],[]]
=> [[1,1,1],[]]
=> [1,1,1]
=> 2
[1,1,1,0,0,0]
=> [[2,2],[]]
=> [[2,2],[]]
=> [2,2]
=> 2
[1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> [[4],[]]
=> [4]
=> 0
[1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> [[3,1],[]]
=> [3,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [[3,2],[1]]
=> [3,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> [[2,1,1],[]]
=> [2,1,1]
=> 2
[1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> [[3,2],[]]
=> [3,2]
=> 2
[1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [[3,3],[2]]
=> [3,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [[2,2,1],[1]]
=> [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [[2,2,2],[1,1]]
=> [2,1,1]
=> 2
[1,1,0,1,0,1,0,0]
=> [[4],[]]
=> [[1,1,1,1],[]]
=> [1,1,1,1]
=> 3
[1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [[2,2,2],[1]]
=> [2,2,1]
=> 3
[1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [[3,3],[1]]
=> [3,2]
=> 2
[1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> [[2,2,1],[]]
=> [2,2,1]
=> 3
[1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> [[3,3],[]]
=> [3,3]
=> 3
[1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> [[2,2,2],[]]
=> [2,2,2]
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> [[5],[]]
=> [5]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> [[4,1],[]]
=> [4,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [[4,2],[1]]
=> [4,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> [[3,1,1],[]]
=> [3,1,1]
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> [[4,2],[]]
=> [4,2]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [[4,3],[2]]
=> [4,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [[3,2,1],[1]]
=> [3,2]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [[3,2,2],[1,1]]
=> [3,1,1]
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> [[2,1,1,1],[]]
=> [2,1,1,1]
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [[3,2,2],[1]]
=> [3,2,1]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [[4,3],[1]]
=> [4,2]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> [[3,2,1],[]]
=> [3,2,1]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> [[4,3],[]]
=> [4,3]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> [[3,2,2],[]]
=> [3,2,2]
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [[4,4],[3]]
=> [4,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [[3,3,1],[2]]
=> [3,2]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [[3,3,2],[2,1]]
=> [3,2]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [[2,2,1,1],[1]]
=> [2,2,1]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [[3,3,2],[2]]
=> [3,3]
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [[3,3,3],[2,2]]
=> [3,1,1]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [[2,2,2,1],[1,1]]
=> [2,2,1]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [[2,2,2,2],[1,1,1]]
=> [2,1,1,1]
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> [[1,1,1,1,1],[]]
=> [1,1,1,1,1]
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [[2,2,2,2],[1,1]]
=> [2,2,1,1]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [[3,3,3],[2,1]]
=> [3,2,1]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [[2,2,2,1],[1]]
=> [2,2,2]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [[3,3,3],[2]]
=> [3,3,1]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [[2,2,2,2],[1]]
=> [2,2,2,1]
=> 5
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [[6,6],[4]]
=> [[2,2,2,2,2,2],[1,1,1,1]]
=> ?
=> ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [[5,4,3],[2,1]]
=> [[3,3,3,2,1],[2,1]]
=> ?
=> ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [[5,5,3],[2,1]]
=> [[3,3,3,2,2],[2,1]]
=> ?
=> ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [[5,5,4],[2,1]]
=> [[3,3,3,3,2],[2,1]]
=> ?
=> ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [[5,4,4],[1,1]]
=> [[3,3,3,3,1],[2]]
=> ?
=> ? = 8
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [[5,4,3],[2]]
=> [[3,3,3,2,1],[1,1]]
=> ?
=> ? = 7
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [[5,4,3],[1]]
=> [[3,3,3,2,1],[1]]
=> ?
=> ? = 8
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1,1,1,1],[1]]
=> ?
=> ?
=> ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,2,1],[1,1,1,1,1]]
=> ?
=> ?
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4,1],[1]]
=> [[5,4,4,4],[1]]
=> ?
=> ? = 11
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5,1],[]]
=> [[4,3,3,3,3],[]]
=> ?
=> ? = 12
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,1],[]]
=> [[5,4,4,4],[]]
=> ?
=> ? = 12
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> [[7,7],[6]]
=> ?
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [[3,3,3,3,3,3],[2,2,2,2,2]]
=> [[6,6,6],[5,5]]
=> ?
=> ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [[7,7],[6]]
=> [[2,2,2,2,2,2,2],[1,1,1,1,1,1]]
=> ?
=> ? = 6
[1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [[6,6,6],[1]]
=> ?
=> ?
=> ? = 14
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,3],[3]]
=> [[5,5,5,4],[1,1,1]]
=> ?
=> ? = 11
[1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [[4,4,4,4,3],[1]]
=> [[5,5,5,4],[1]]
=> ?
=> ? = 13
[1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [[5,5,5,3],[]]
=> ?
=> ?
=> ? = 14
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3,1]]
=> [[5,5,5,5],[2,1,1]]
=> ?
=> ? = 11
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [[5,5,5,5],[4]]
=> [[4,4,4,4,4],[1,1,1,1]]
=> ?
=> ? = 12
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [[5,5,5,5],[1]]
=> [[4,4,4,4,4],[1]]
=> ?
=> ? = 15
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3]]
=> [[5,5,5,5],[1,1,1]]
=> ?
=> ? = 12
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [[5,5,5,4],[]]
=> [[4,4,4,4,3],[]]
=> ?
=> ? = 15
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,4],[]]
=> [[5,5,5,5],[]]
=> ?
=> ? = 15
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [[5,5,5,5],[]]
=> [[4,4,4,4,4],[]]
=> ?
=> ? = 16
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,5],[4]]
=> [[5,5,5,5,5],[1,1,1,1]]
=> ?
=> ? = 16
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [[5,5,5,5,1],[]]
=> [[5,4,4,4,4],[]]
=> ?
=> ? = 16
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [[5,5,5,5,5,5],[4]]
=> [[6,6,6,6,6],[1,1,1,1]]
=> ?
=> ? = 20
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,4,4],[3]]
=> [[6,6,6,6],[1,1,1]]
=> ?
=> ? = 15
[]
=> ?
=> ?
=> ?
=> ? = 0
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [[5,5,5,5,5],[1,1]]
=> ?
=> ?
=> ? = 18
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [[5,5,5,5,5],[1]]
=> [[5,5,5,5,5],[1]]
=> ?
=> ? = 19
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [[6,6,6,6],[]]
=> [[4,4,4,4,4,4],[]]
=> ?
=> ? = 20
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [[5,5,5,5,5],[]]
=> [[5,5,5,5,5],[]]
=> ?
=> ? = 20
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [[2,2,2,2,2,2,2,2],[1,1,1,1,1,1,1]]
=> [[8,8],[7]]
=> ?
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [[6,6,6,6,6],[]]
=> [[5,5,5,5,5,5],[]]
=> ?
=> ? = 25
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [[6,6,6,6,5],[]]
=> [[5,5,5,5,5,4],[]]
=> ?
=> ? = 24
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [[5,5,5,5,5,5],[]]
=> [[6,6,6,6,6],[]]
=> ?
=> ? = 24
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00151: Permutations to cycle typeSet partitions
St000728: Set partitions ⟶ ℤResult quality: 59% values known / values provided: 86%distinct values known / distinct values provided: 59%
Values
[1,0]
=> [1] => {{1}}
=> ? = 0
[1,0,1,0]
=> [1,2] => {{1},{2}}
=> 0
[1,1,0,0]
=> [2,1] => {{1,2}}
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => {{1},{2},{3}}
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> 2
[1,1,1,0,0,0]
=> [3,2,1] => {{1,3},{2}}
=> 2
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => {{1},{2,3,4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => {{1},{2,4},{3}}
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => {{1,2,3},{4}}
=> 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => {{1,2,4},{3}}
=> 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => {{1,3},{2},{4}}
=> 2
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => {{1,3,4},{2}}
=> 3
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => {{1,4},{2},{3}}
=> 3
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => {{1},{2},{3},{4,5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => {{1},{2},{3,4},{5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => {{1},{2},{3,4,5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => {{1},{2,3,4},{5}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => {{1},{2,3,4,5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => {{1},{2,3,5},{4}}
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => {{1},{2,4,5},{3}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => {{1},{2,5},{3,4}}
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => {{1,2},{3,4,5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => {{1,2,3},{4},{5}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => {{1,2,3},{4,5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => {{1,2,3,4},{5}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => {{1,2,3,5},{4}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => {{1,2,4},{3},{5}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => {{1,2,4,5},{3}}
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => {{1,2,5},{3},{4}}
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => {{1,2,5},{3,4}}
=> 5
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8] => {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,8,7] => {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,4,5,7,6,8] => {{1},{2},{3},{4},{5},{6,7},{8}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,4,5,7,8,6] => {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6,7,8] => {{1},{2,3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,8,7,5,4,6,3,2] => {{1},{2,8},{3,7},{4,5},{6}}
=> ? = 11
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,8,7,5,6,4,3,2] => {{1},{2,8},{3,7},{4,5,6}}
=> ? = 12
[1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => {{1},{2,8},{3,7},{4,6},{5}}
=> ? = 12
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8] => {{1,2},{3},{4},{5},{6},{7},{8}}
=> ? = 1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7,8] => {{1,2,3},{4},{5},{6},{7},{8}}
=> ? = 2
[1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => {{1,2,8},{3,7},{4,6},{5}}
=> ? = 13
[1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [8,3,7,5,6,4,2,1] => {{1,8},{2,3,7},{4,5,6}}
=> ? = 14
[1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [7,6,3,5,4,2,1,8] => {{1,7},{2,6},{3},{4,5},{8}}
=> ? = 11
[1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [8,7,3,5,4,6,2,1] => {{1,8},{2,7},{3},{4,5},{6}}
=> ? = 13
[1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [8,7,3,5,6,4,2,1] => {{1,8},{2,7},{3},{4,5,6}}
=> ? = 14
[1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> [7,6,4,3,5,2,1,8] => {{1,7},{2,6},{3,4},{5},{8}}
=> ? = 11
[1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [7,6,4,5,3,2,1,8] => {{1,7},{2,6},{3,4,5},{8}}
=> ? = 12
[1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0]
=> [8,7,4,6,5,3,2,1] => {{1,8},{2,7},{3,4,6},{5}}
=> ? = 15
[1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,6,5,4,3,2,1,8] => {{1,7},{2,6},{3,5},{4},{8}}
=> ? = 12
[1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0]
=> [7,6,5,4,3,2,8,1] => {{1,7,8},{2,6},{3,5},{4}}
=> ? = 13
[1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0]
=> [8,7,5,4,6,3,2,1] => {{1,8},{2,7},{3,5,6},{4}}
=> ? = 15
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [8,7,6,4,5,3,2,1] => {{1,8},{2,7},{3,6},{4},{5}}
=> ? = 15
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [8,7,6,5,4,3,2,1] => {{1,8},{2,7},{3,6},{4,5}}
=> ? = 16
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [8,7,6,5,4,3,2,1,9] => {{1,8},{2,7},{3,6},{4,5},{9}}
=> ? = 16
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => {{1},{2,9},{3,8},{4,7},{5,6}}
=> ? = 16
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,8,7,6,5,4,3,2,1,10] => {{1,9},{2,8},{3,7},{4,6},{5},{10}}
=> ? = 20
[1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [8,7,6,4,5,3,2,1,9] => {{1,8},{2,7},{3,6},{4},{5},{9}}
=> ? = 15
[]
=> [] => {}
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,1] => {{1,2,3,4,5,6,7,8,9}}
=> ? = 8
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [9,8,4,7,5,6,3,2,1] => ?
=> ? = 18
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [9,8,7,5,4,6,3,2,1] => {{1,9},{2,8},{3,7},{4,5},{6}}
=> ? = 19
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [9,8,7,5,6,4,3,2,1] => {{1,9},{2,8},{3,7},{4,5,6}}
=> ? = 20
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [9,8,7,6,5,4,3,2,1] => {{1,9},{2,8},{3,7},{4,6},{5}}
=> ? = 20
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9] => {{1},{2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,5,6,7,9,8] => {{1},{2},{3},{4},{5},{6},{7},{8,9}}
=> ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6,7,8,9,10] => {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}}
=> ? = 0
[1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,8,9,10,1] => {{1,2,3,4,5,6,7,8,9,10}}
=> ? = 9
[1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7,8,9] => {{1,2},{3},{4},{5},{6},{7},{8},{9}}
=> ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [10,9,8,7,6,5,4,3,2,1] => {{1,10},{2,9},{3,8},{4,7},{5,6}}
=> ? = 25
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [10,9,8,6,5,7,4,3,2,1] => {{1,10},{2,9},{3,8},{4,6,7},{5}}
=> ? = 24
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [10,9,8,7,5,6,4,3,2,1] => {{1,10},{2,9},{3,8},{4,7},{5},{6}}
=> ? = 24
Description
The dimension of a set partition. This is the sum of the lengths of the arcs of a set partition. Equivalently, one obtains that this is the sum of the maximal entries of the blocks minus the sum of the minimal entries of the blocks. A slightly shifted definition of the dimension is [[St000572]].
Mp00028: Dyck paths reverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000018: Permutations ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 86%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 5
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,2] => ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,6,3,7,5] => ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [3,4,1,6,2,7,5] => ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,5,1,6,2,7,4] => ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [2,5,6,1,3,7,4] => ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [3,5,6,1,2,7,4] => ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [4,5,6,1,2,7,3] => ? = 10
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,4,7,1,3,5,6] => ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [3,4,7,1,2,5,6] => ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,7,1,2,3,5,6] => ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [4,1,5,7,2,3,6] => ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [4,5,1,7,2,3,6] => ? = 9
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [5,1,7,2,3,4,6] => ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [5,7,1,2,3,4,6] => ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [4,5,7,1,2,3,6] => ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,6,7,3,5] => ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [3,4,1,6,7,2,5] => ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,5] => ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [4,6,1,2,7,3,5] => ? = 9
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,4,5,6,7,2,3] => ? = 8
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [4,5,1,6,7,2,3] => ? = 10
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [2,5,6,1,7,3,4] => ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [5,1,6,2,7,3,4] => ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [3,5,6,1,7,2,4] => ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [5,6,1,2,7,3,4] => ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [4,5,6,1,7,2,3] => ? = 11
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [3,6,1,7,2,4,5] => ? = 9
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [4,1,6,7,2,3,5] => ? = 9
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [3,4,6,7,1,2,5] => ? = 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [4,6,1,7,2,3,5] => ? = 10
[1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [6,1,7,2,3,4,5] => ? = 9
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [3,6,7,1,2,4,5] => ? = 10
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [4,6,7,1,2,3,5] => ? = 11
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [2,5,6,7,1,3,4] => ? = 10
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [5,1,6,7,2,3,4] => ? = 10
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [3,5,6,7,1,2,4] => ? = 11
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [5,6,1,7,2,3,4] => ? = 11
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [4,5,6,7,1,2,3] => ? = 12
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,3,1,4,5,6,7,8] => ? = 2
[1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,0]
=> [5,6,1,7,2,3,4,8] => ? = 11
[1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,7,1,2,3,8] => ? = 12
[1,1,0,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,5,7,8,6] => ? = 2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,7,8,2] => ? = 6
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00069: Permutations complementPermutations
St000246: Permutations ⟶ ℤResult quality: 64% values known / values provided: 70%distinct values known / distinct values provided: 64%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [1,2] => [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [2,1] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => 1
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => 2
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => 1
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => 2
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => 3
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 3
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => 3
[1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [5,4,3,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [5,4,2,3,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [5,4,1,3,2] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [5,2,4,3,1] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [5,2,4,1,3] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [5,1,4,3,2] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [5,2,1,4,3] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,1,0,0]
=> [1,2,3,4,6,5,7] => [7,6,5,4,2,3,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [1,2,3,4,6,7,5] => [7,6,5,4,2,1,3] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,2,3,4,7,5,6] => [7,6,5,4,1,3,2] => ? = 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [1,2,3,5,4,6,7] => [7,6,5,3,4,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [1,2,3,5,6,7,4] => [7,6,5,3,2,1,4] => ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,2,4,3,5,6,7] => [7,6,4,5,3,2,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> [1,3,2,4,5,6,7] => [7,5,6,4,3,2,1] => ? = 1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => [7,3,2,6,1,5,4] => ? = 8
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => [7,2,1,6,5,4,3] => ? = 8
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [1,5,6,7,2,3,4] => [7,3,2,1,6,5,4] => ? = 9
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => [6,7,5,4,3,2,1] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => [6,7,4,5,3,2,1] => ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => [6,5,7,4,3,2,1] => ? = 2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => [6,5,4,7,3,2,1] => ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,5,4,3,2,7,1] => ? = 5
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => [6,5,4,3,1,7,2] => ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,6,7,3,5] => [6,4,7,2,1,5,3] => ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,4,7,1,3,5,6] => [6,4,1,7,5,3,2] => ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,5] => [6,4,2,7,1,5,3] => ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [2,5,6,1,3,7,4] => [6,3,2,7,5,1,4] => ? = 8
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,5,7,1,3,4,6] => [6,3,1,7,5,4,2] => ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [2,5,6,1,7,3,4] => [6,3,2,7,1,5,4] => ? = 9
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [2,6,7,1,3,4,5] => [6,2,1,7,5,4,3] => ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,1,0,0,0]
=> [2,5,6,7,1,3,4] => [6,3,2,1,7,5,4] => ? = 10
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => [5,7,4,3,2,1,6] => ? = 6
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => [3,7,6,2,5,1,4] => ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [5,1,2,6,7,3,4] => [3,7,6,2,1,5,4] => ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,1,2,7,3,4,5] => [2,7,6,1,5,4,3] => ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [4,1,5,7,2,3,6] => [4,7,3,1,6,5,2] => ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [4,1,6,7,2,3,5] => [4,7,2,1,6,5,3] => ? = 9
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [5,1,6,2,3,4,7] => [3,7,2,6,5,4,1] => ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [5,1,6,2,3,7,4] => [3,7,2,6,5,1,4] => ? = 8
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [5,1,7,2,3,4,6] => [3,7,1,6,5,4,2] => ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [6,1,7,2,3,4,5] => [2,7,1,6,5,4,3] => ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [5,1,6,7,2,3,4] => [3,7,2,1,6,5,4] => ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [3,4,1,6,2,7,5] => [5,4,7,2,6,1,3] => ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [3,4,1,6,7,2,5] => [5,4,7,2,1,6,3] => ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,5,1,6,2,7,4] => [5,3,7,2,6,1,4] => ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [3,6,1,7,2,4,5] => [5,2,7,1,6,4,3] => ? = 9
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [3,4,5,6,1,2,7] => [5,4,3,2,7,6,1] => ? = 8
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [3,4,6,7,1,2,5] => [5,4,2,1,7,6,3] => ? = 10
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => [5,3,2,7,6,4,1] => ? = 8
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [3,5,6,1,2,7,4] => [5,3,2,7,6,1,4] => ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [3,5,7,1,2,4,6] => [5,3,1,7,6,4,2] => ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [3,5,6,1,7,2,4] => [5,3,2,7,1,6,4] => ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [3,6,7,1,2,4,5] => [5,2,1,7,6,4,3] => ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [3,5,6,7,1,2,4] => [5,3,2,1,7,6,4] => ? = 11
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5,7] => [4,2,7,6,5,3,1] => ? = 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,7,1,2,3,5,6] => [4,1,7,6,5,3,2] => ? = 8
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [4,6,1,2,7,3,5] => [4,2,7,6,1,5,3] => ? = 9
Description
The number of non-inversions of a permutation. For a permutation of $\{1,\ldots,n\}$, this is given by $\operatorname{noninv}(\pi) = \binom{n}{2}-\operatorname{inv}(\pi)$.
Mp00028: Dyck paths reverseDyck paths
Mp00227: Dyck paths Delest-Viennot-inverseDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001579: Permutations ⟶ ℤResult quality: 45% values known / values provided: 67%distinct values known / distinct values provided: 45%
Values
[1,0]
=> [1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [2,1,3,4,5,6,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,3,1,4,5,6,7] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [3,1,2,4,5,6,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,1,5,6,7] => ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [3,5,6,1,2,4,7] => ? = 8
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [5,6,1,2,3,4,7] => ? = 8
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [4,5,6,1,2,3,7] => ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,7,1] => ? = 6
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,5,6,7,2] => ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,6,3,7,5] => ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [3,4,1,6,2,7,5] => ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> [5,1,2,6,3,7,4] => ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0,1,0]
=> [3,5,1,6,2,7,4] => ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [2,5,6,1,3,7,4] => ? = 8
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0,1,0]
=> [5,1,6,2,3,7,4] => ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [3,5,6,1,2,7,4] => ? = 9
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [5,6,1,2,3,7,4] => ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0,1,0]
=> [4,5,6,1,2,7,3] => ? = 10
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,5,7,1,6] => ? = 6
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,4,7,1,3,5,6] => ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [3,4,7,1,2,5,6] => ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [4,7,1,2,3,5,6] => ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [4,1,5,7,2,3,6] => ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [4,5,1,7,2,3,6] => ? = 9
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,5,7,2,3,4,6] => ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [2,5,7,1,3,4,6] => ? = 8
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [5,1,7,2,3,4,6] => ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [5,7,1,2,3,4,6] => ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [4,5,7,1,2,3,6] => ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,6,7,3,5] => ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [3,4,1,6,7,2,5] => ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,4,6,1,7,3,5] => ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> [4,6,1,2,7,3,5] => ? = 9
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [3,4,5,6,7,1,2] => ? = 10
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [4,5,1,6,7,2,3] => ? = 10
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,1,0,0]
=> [1,5,6,2,7,3,4] => ? = 8
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,1,0,0]
=> [2,5,6,1,7,3,4] => ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [5,1,6,2,7,3,4] => ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [3,5,6,1,7,2,4] => ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [5,6,1,2,7,3,4] => ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [4,5,6,1,7,2,3] => ? = 11
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,6,2,7,3,4,5] => ? = 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [6,1,2,7,3,4,5] => ? = 8
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [3,6,1,7,2,4,5] => ? = 9
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,4,6,7,2,3,5] => ? = 8
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [4,1,6,7,2,3,5] => ? = 9
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [3,4,6,7,1,2,5] => ? = 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [4,6,1,7,2,3,5] => ? = 10
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,6,7,2,3,4,5] => ? = 8
[1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [6,1,7,2,3,4,5] => ? = 9
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by $$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
Mp00028: Dyck paths reverseDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
St001726: Permutations ⟶ ℤResult quality: 45% values known / values provided: 66%distinct values known / distinct values provided: 45%
Values
[1,0]
=> [1,0]
=> [1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 2
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 2
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 2
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 2
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 3
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 2
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 5
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6,7] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0,1,0]
=> [2,3,1,4,5,6,7] => ? = 2
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6,7] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [2,3,4,1,5,6,7] => ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [6,3,5,4,2,1,7] => ? = 8
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [6,5,3,4,2,1,7] => ? = 8
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,5,4,3,2,1,7] => ? = 9
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,7,1] => ? = 6
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,7,1] => ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [2,4,3,6,5,7,1] => ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [4,3,2,6,5,7,1] => ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [6,2,3,5,4,7,1] => ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [6,3,2,5,4,7,1] => ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [2,6,5,4,3,7,1] => ? = 8
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [6,2,5,4,3,7,1] => ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [6,3,5,4,2,7,1] => ? = 9
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [6,5,3,4,2,7,1] => ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => ? = 10
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,5,7,6,1] => ? = 6
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [2,7,4,3,5,6,1] => ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [7,3,4,2,5,6,1] => ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [7,4,3,2,5,6,1] => ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,2,4,5,3,6,1] => ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => ? = 9
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,7,5,4,3,6,2] => ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [2,7,5,4,3,6,1] => ? = 8
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [7,2,5,4,3,6,1] => ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [7,5,3,4,2,6,1] => ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [7,5,4,3,2,6,1] => ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,4,3,7,6,5,1] => ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,3,2,7,6,5,1] => ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,7,4,3,6,5,1] => ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [7,4,3,2,6,5,1] => ? = 9
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,1,0,0,0,0]
=> [1,7,4,5,6,3,2] => ? = 8
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [7,3,4,5,6,2,1] => ? = 10
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [7,4,3,5,6,2,1] => ? = 10
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,7,5,4,6,3,2] => ? = 8
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [2,7,5,4,6,3,1] => ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [7,2,5,4,6,3,1] => ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [7,3,5,4,6,2,1] => ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [7,5,3,4,6,2,1] => ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? = 11
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,7,3,6,5,4,2] => ? = 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [7,2,3,6,5,4,1] => ? = 8
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [7,3,2,6,5,4,1] => ? = 9
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,7,4,6,5,3,2] => ? = 8
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [7,2,4,6,5,3,1] => ? = 9
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [7,3,4,6,5,2,1] => ? = 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [7,4,3,6,5,2,1] => ? = 10
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,7,6,4,5,3,2] => ? = 8
Description
The number of visible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$.
Matching statistic: St000497
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00151: Permutations to cycle typeSet partitions
St000497: Set partitions ⟶ ℤResult quality: 45% values known / values provided: 66%distinct values known / distinct values provided: 45%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => {{1,2}}
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => {{1,3},{2}}
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => {{1,2,4},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => {{1,3,4},{2}}
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => {{1,4},{2},{3}}
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => {{1,2,3,5},{4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => {{1,2,4,5},{3}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => {{1,2,5},{3},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => {{1,2,5},{3,4}}
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => {{1,3,4,5},{2}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => {{1,4,5},{2},{3}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => {{1,4,5},{2,3}}
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => {{1,5},{2,3,4}}
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => {{1,2,3,4,5,6}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => {{1,2,3,4,6},{5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => {{1,2,3,5,6},{4}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => {{1,2,3,6},{4},{5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => {{1,2,3,6},{4,5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => {{1,2,4,5,6},{3}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => {{1,2,4,6},{3},{5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => {{1,2,5,6},{3},{4}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => {{1,2,6},{3},{4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => {{1,2,6},{3},{4,5}}
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => {{1,2,5,6},{3,4}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => {{1,2,6},{3,4},{5}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => {{1,2,6},{3,4,5}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => {{1,2,6},{3,5},{4}}
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => {{1,3,4,5,6},{2}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => {{1,3,4,6},{2},{5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => {{1,3,5,6},{2},{4}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => {{1,3,6},{2},{4},{5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => {{1,3,6},{2},{4,5}}
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => {{1,4,5,6},{2},{3}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => {{1,4,6},{2},{3},{5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => {{1,5,6},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => {{1,6},{2},{3},{4},{5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => {{1,6},{2},{3},{4,5}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => {{1,5,6},{2},{3,4}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => {{1,6},{2},{3,4},{5}}
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => {{1,6},{2},{3,4,5}}
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => {{1,6},{2},{3,5},{4}}
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,5,8,6,7,1] => {{1,2,3,4,5,8},{6},{7}}
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,4,8,5,6,7,1] => {{1,2,3,4,8},{5},{6},{7}}
=> ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,8,7,5,4,6,3,1] => {{1,2,8},{3,7},{4,5},{6}}
=> ? = 8
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,7,5,6,4,3,1] => {{1,2,8},{3,7},{4,5,6}}
=> ? = 8
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => {{1,2,8},{3,7},{4,6},{5}}
=> ? = 9
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => {{1,5,6,7,8},{2},{3},{4}}
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [7,2,3,4,5,6,8,1] => {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [8,2,3,4,5,6,7,1] => {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [8,2,3,4,5,7,6,1] => {{1,8},{2},{3},{4},{5},{6,7}}
=> ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [8,2,4,3,6,5,7,1] => {{1,8},{2},{3,4},{5,6},{7}}
=> ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [8,2,4,3,7,6,5,1] => {{1,8},{2},{3,4},{5,7},{6}}
=> ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [8,2,5,4,6,7,3,1] => ?
=> ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [8,2,5,4,7,6,3,1] => {{1,8},{2},{3,5,7},{4},{6}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [8,2,6,5,4,3,7,1] => {{1,8},{2},{3,6},{4,5},{7}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [8,2,6,5,4,7,3,1] => {{1,8},{2},{3,6,7},{4,5}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [8,2,7,5,4,6,3,1] => {{1,8},{2},{3,7},{4,5},{6}}
=> ? = 9
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [8,2,7,5,6,4,3,1] => {{1,8},{2},{3,7},{4,5,6}}
=> ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [8,2,7,6,5,4,3,1] => {{1,8},{2},{3,7},{4,6},{5}}
=> ? = 10
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [8,3,2,4,5,6,7,1] => {{1,8},{2,3},{4},{5},{6},{7}}
=> ? = 6
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> [8,3,4,6,5,2,7,1] => ?
=> ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> [8,3,4,7,5,6,2,1] => ?
=> ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [8,3,4,7,6,5,2,1] => {{1,8},{2,3,4,7},{5,6}}
=> ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [8,3,6,4,5,7,2,1] => ?
=> ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [8,3,7,4,6,5,2,1] => {{1,8},{2,3,7},{4},{5,6}}
=> ? = 9
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [7,3,6,5,4,2,8,1] => {{1,7,8},{2,3,6},{4,5}}
=> ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [8,3,6,5,4,2,7,1] => {{1,8},{2,3,6},{4,5},{7}}
=> ? = 8
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [8,3,6,5,4,7,2,1] => {{1,8},{2,3,6,7},{4,5}}
=> ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [8,3,7,5,6,4,2,1] => {{1,8},{2,3,7},{4,5,6}}
=> ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [8,3,7,6,5,4,2,1] => {{1,8},{2,3,7},{4,6},{5}}
=> ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [8,4,3,2,6,5,7,1] => {{1,8},{2,4},{3},{5,6},{7}}
=> ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [8,4,3,2,7,6,5,1] => {{1,8},{2,4},{3},{5,7},{6}}
=> ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> [8,4,3,6,5,2,7,1] => ?
=> ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [8,4,3,7,6,5,2,1] => ?
=> ? = 9
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [7,6,3,4,5,2,8,1] => {{1,7,8},{2,6},{3},{4},{5}}
=> ? = 8
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [8,7,3,4,5,6,2,1] => {{1,8},{2,7},{3},{4},{5},{6}}
=> ? = 10
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [8,7,3,4,6,5,2,1] => {{1,8},{2,7},{3},{4},{5,6}}
=> ? = 10
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [7,6,3,5,4,2,8,1] => {{1,7,8},{2,6},{3},{4,5}}
=> ? = 8
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [8,6,3,5,4,2,7,1] => {{1,8},{2,6},{3},{4,5},{7}}
=> ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [8,6,3,5,4,7,2,1] => ?
=> ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [8,7,3,5,4,6,2,1] => {{1,8},{2,7},{3},{4,5},{6}}
=> ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [8,7,3,5,6,4,2,1] => {{1,8},{2,7},{3},{4,5,6}}
=> ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [8,7,3,6,5,4,2,1] => {{1,8},{2,7},{3},{4,6},{5}}
=> ? = 11
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [7,5,4,3,6,2,8,1] => {{1,7,8},{2,5,6},{3,4}}
=> ? = 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [8,5,4,3,6,7,2,1] => {{1,8},{2,5,6,7},{3,4}}
=> ? = 8
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [8,5,4,3,7,6,2,1] => {{1,8},{2,5,7},{3,4},{6}}
=> ? = 9
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [7,6,4,3,5,2,8,1] => {{1,7,8},{2,6},{3,4},{5}}
=> ? = 8
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [8,6,4,3,5,7,2,1] => {{1,8},{2,6,7},{3,4},{5}}
=> ? = 9
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [8,7,4,3,5,6,2,1] => {{1,8},{2,7},{3,4},{5},{6}}
=> ? = 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [8,7,4,3,6,5,2,1] => {{1,8},{2,7},{3,4},{5,6}}
=> ? = 10
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [7,6,4,5,3,2,8,1] => {{1,7,8},{2,6},{3,4,5}}
=> ? = 8
Description
The lcb statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcb''' (left-closer-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00151: Permutations to cycle typeSet partitions
St000572: Set partitions ⟶ ℤResult quality: 45% values known / values provided: 66%distinct values known / distinct values provided: 45%
Values
[1,0]
=> [1,1,0,0]
=> [2,1] => {{1,2}}
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => {{1,2,3}}
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => {{1,3},{2}}
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => {{1,2,3,4}}
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => {{1,2,4},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => {{1,3,4},{2}}
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => {{1,4},{2},{3}}
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => {{1,2,3,4,5}}
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => {{1,2,3,5},{4}}
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => {{1,2,4,5},{3}}
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => {{1,2,5},{3},{4}}
=> 2
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => {{1,2,5},{3,4}}
=> 2
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => {{1,3,4,5},{2}}
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => {{1,3,5},{2},{4}}
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,2,3,5,1] => {{1,4,5},{2},{3}}
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 3
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => {{1,4,5},{2,3}}
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => {{1,5},{2,3,4}}
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 4
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => {{1,2,3,4,5,6}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,5,1] => {{1,2,3,4,6},{5}}
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,4,6,1] => {{1,2,3,5,6},{4}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,6,4,5,1] => {{1,2,3,6},{4},{5}}
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,5,4,1] => {{1,2,3,6},{4,5}}
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,3,5,6,1] => {{1,2,4,5,6},{3}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,3,6,5,1] => {{1,2,4,6},{3},{5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,5,3,4,6,1] => {{1,2,5,6},{3},{4}}
=> 2
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,6,3,4,5,1] => {{1,2,6},{3},{4},{5}}
=> 3
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,6,3,5,4,1] => {{1,2,6},{3},{4,5}}
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,4,3,6,1] => {{1,2,5,6},{3,4}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,6,4,3,5,1] => {{1,2,6},{3,4},{5}}
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,6,4,5,3,1] => {{1,2,6},{3,4,5}}
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,5,4,3,1] => {{1,2,6},{3,5},{4}}
=> 4
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,2,4,5,6,1] => {{1,3,4,5,6},{2}}
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,2,4,6,5,1] => {{1,3,4,6},{2},{5}}
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,5,4,6,1] => {{1,3,5,6},{2},{4}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => {{1,3,6},{2},{4},{5}}
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => {{1,3,6},{2},{4,5}}
=> 3
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [4,2,3,5,6,1] => {{1,4,5,6},{2},{3}}
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => {{1,4,6},{2},{3},{5}}
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [5,2,3,4,6,1] => {{1,5,6},{2},{3},{4}}
=> 3
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [6,2,3,4,5,1] => {{1,6},{2},{3},{4},{5}}
=> 4
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [6,2,3,5,4,1] => {{1,6},{2},{3},{4,5}}
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [5,2,4,3,6,1] => {{1,5,6},{2},{3,4}}
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => {{1,6},{2},{3,4},{5}}
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => {{1,6},{2},{3,4,5}}
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [6,2,5,4,3,1] => {{1,6},{2},{3,5},{4}}
=> 5
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,3,4,5,8,6,7,1] => {{1,2,3,4,5,8},{6},{7}}
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,3,4,8,5,6,7,1] => {{1,2,3,4,8},{5},{6},{7}}
=> ? = 3
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [2,8,7,5,4,6,3,1] => {{1,2,8},{3,7},{4,5},{6}}
=> ? = 8
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [2,8,7,5,6,4,3,1] => {{1,2,8},{3,7},{4,5,6}}
=> ? = 8
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [2,8,7,6,5,4,3,1] => {{1,2,8},{3,7},{4,6},{5}}
=> ? = 9
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,1,0,0]
=> [5,2,3,4,6,7,8,1] => {{1,5,6,7,8},{2},{3},{4}}
=> ? = 3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0]
=> [7,2,3,4,5,6,8,1] => {{1,7,8},{2},{3},{4},{5},{6}}
=> ? = 5
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,1,0,0,0]
=> [8,2,3,4,5,6,7,1] => {{1,8},{2},{3},{4},{5},{6},{7}}
=> ? = 6
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0]
=> [8,2,3,4,5,7,6,1] => {{1,8},{2},{3},{4},{5},{6,7}}
=> ? = 6
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,1,0,0,0]
=> [8,2,4,3,6,5,7,1] => {{1,8},{2},{3,4},{5,6},{7}}
=> ? = 6
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0]
=> [8,2,4,3,7,6,5,1] => {{1,8},{2},{3,4},{5,7},{6}}
=> ? = 7
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0]
=> [8,2,5,4,6,7,3,1] => ?
=> ? = 7
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,1,0,0,0,0,0]
=> [8,2,5,4,7,6,3,1] => {{1,8},{2},{3,5,7},{4},{6}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,1,0,0,0]
=> [8,2,6,5,4,3,7,1] => {{1,8},{2},{3,6},{4,5},{7}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,1,0,0,0,0]
=> [8,2,6,5,4,7,3,1] => {{1,8},{2},{3,6,7},{4,5}}
=> ? = 8
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,1,0,0,0,0,0]
=> [8,2,7,5,4,6,3,1] => {{1,8},{2},{3,7},{4,5},{6}}
=> ? = 9
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0]
=> [8,2,7,5,6,4,3,1] => {{1,8},{2},{3,7},{4,5,6}}
=> ? = 9
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> [8,2,7,6,5,4,3,1] => {{1,8},{2},{3,7},{4,6},{5}}
=> ? = 10
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,1,0,0,0]
=> [8,3,2,4,5,6,7,1] => {{1,8},{2,3},{4},{5},{6},{7}}
=> ? = 6
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,1,0,0,0]
=> [8,3,4,6,5,2,7,1] => ?
=> ? = 7
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,1,0,0,0,0,0]
=> [8,3,4,7,5,6,2,1] => ?
=> ? = 8
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0]
=> [8,3,4,7,6,5,2,1] => {{1,8},{2,3,4,7},{5,6}}
=> ? = 8
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,0]
=> [8,3,6,4,5,7,2,1] => ?
=> ? = 8
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0]
=> [8,3,7,4,6,5,2,1] => {{1,8},{2,3,7},{4},{5,6}}
=> ? = 9
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,1,0,0]
=> [7,3,6,5,4,2,8,1] => {{1,7,8},{2,3,6},{4,5}}
=> ? = 7
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,1,0,0,0]
=> [8,3,6,5,4,2,7,1] => {{1,8},{2,3,6},{4,5},{7}}
=> ? = 8
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,1,0,0,0,0]
=> [8,3,6,5,4,7,2,1] => {{1,8},{2,3,6,7},{4,5}}
=> ? = 8
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0]
=> [8,3,7,5,6,4,2,1] => {{1,8},{2,3,7},{4,5,6}}
=> ? = 9
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> [8,3,7,6,5,4,2,1] => {{1,8},{2,3,7},{4,6},{5}}
=> ? = 10
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [8,4,3,2,6,5,7,1] => {{1,8},{2,4},{3},{5,6},{7}}
=> ? = 7
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,1,1,0,0,0,0,0]
=> [8,4,3,2,7,6,5,1] => {{1,8},{2,4},{3},{5,7},{6}}
=> ? = 8
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,1,0,0,0]
=> [8,4,3,6,5,2,7,1] => ?
=> ? = 8
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [8,4,3,7,6,5,2,1] => ?
=> ? = 9
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,1,0,0]
=> [7,6,3,4,5,2,8,1] => {{1,7,8},{2,6},{3},{4},{5}}
=> ? = 8
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0]
=> [8,7,3,4,5,6,2,1] => {{1,8},{2,7},{3},{4},{5},{6}}
=> ? = 10
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0]
=> [8,7,3,4,6,5,2,1] => {{1,8},{2,7},{3},{4},{5,6}}
=> ? = 10
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,1,0,0]
=> [7,6,3,5,4,2,8,1] => {{1,7,8},{2,6},{3},{4,5}}
=> ? = 8
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,1,0,0,0]
=> [8,6,3,5,4,2,7,1] => {{1,8},{2,6},{3},{4,5},{7}}
=> ? = 9
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0]
=> [8,6,3,5,4,7,2,1] => ?
=> ? = 9
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0]
=> [8,7,3,5,4,6,2,1] => {{1,8},{2,7},{3},{4,5},{6}}
=> ? = 10
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0]
=> [8,7,3,5,6,4,2,1] => {{1,8},{2,7},{3},{4,5,6}}
=> ? = 10
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> [8,7,3,6,5,4,2,1] => {{1,8},{2,7},{3},{4,6},{5}}
=> ? = 11
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,1,0,0]
=> [7,5,4,3,6,2,8,1] => {{1,7,8},{2,5,6},{3,4}}
=> ? = 7
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0]
=> [8,5,4,3,6,7,2,1] => {{1,8},{2,5,6,7},{3,4}}
=> ? = 8
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [8,5,4,3,7,6,2,1] => {{1,8},{2,5,7},{3,4},{6}}
=> ? = 9
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,1,0,0]
=> [7,6,4,3,5,2,8,1] => {{1,7,8},{2,6},{3,4},{5}}
=> ? = 8
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,0,1,0,0,0,0]
=> [8,6,4,3,5,7,2,1] => {{1,8},{2,6,7},{3,4},{5}}
=> ? = 9
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0]
=> [8,7,4,3,5,6,2,1] => {{1,8},{2,7},{3,4},{5},{6}}
=> ? = 10
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0]
=> [8,7,4,3,6,5,2,1] => {{1,8},{2,7},{3,4},{5,6}}
=> ? = 10
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,1,0,0]
=> [7,6,4,5,3,2,8,1] => {{1,7,8},{2,6},{3,4,5}}
=> ? = 8
Description
The dimension exponent of a set partition. This is $$\sum_{B\in\pi} (\max(B) - \min(B) + 1) - n$$ where the summation runs over the blocks of the set partition $\pi$ of $\{1,\dots,n\}$. It is thus equal to the difference [[St000728]] - [[St000211]]. This is also the number of occurrences of the pattern {{1, 3}, {2}}, such that 1 and 3 are consecutive elements in a block. This is also the number of occurrences of the pattern {{1, 3}, {2}}, such that 1 is the minimal and 3 is the maximal element of the block.
The following 42 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St001397Number of pairs of incomparable elements in a finite poset. St000795The mad of a permutation. St000065The number of entries equal to -1 in an alternating sign matrix. St000067The inversion number of the alternating sign matrix. St000332The positive inversions of an alternating sign matrix. St000004The major index of a permutation. St001428The number of B-inversions of a signed permutation. St001843The Z-index of a set partition. St000029The depth of a permutation. St000224The sorting index of a permutation. St001278The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. St000030The sum of the descent differences of a permutations. St000356The number of occurrences of the pattern 13-2. St001869The maximum cut size of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000223The number of nestings in the permutation. St000359The number of occurrences of the pattern 23-1. St001727The number of invisible inversions of a permutation. St000355The number of occurrences of the pattern 21-3. St000039The number of crossings of a permutation. St000080The rank of the poset. St000528The height of a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St001894The depth of a signed permutation. St001861The number of Bruhat lower covers of a permutation. St001866The nesting alignments of a signed permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001821The sorting index of a signed permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.