searching the database
Your data matches 36 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000667
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> 1
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St000993
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> [2]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [2]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,1]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [2,1]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [2]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,1]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [2,2]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [2,1]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [2]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,1,1]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,1]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [4,1]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [2,1]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> [1,1]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [2]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [3]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [2,1,1]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001038
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([],4)
=> [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2]
=> [1,0,1,0]
=> 2
([],5)
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> [1,0,1,0]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2]
=> [1,0,1,0]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2]
=> [1,0,1,0]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000326
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000326: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
([],4)
=> [1,1,1,1]
=> 11110 => 01111 => 2 = 1 + 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => 0011 => 3 = 2 + 1
([],5)
=> [1,1,1,1,1]
=> 111110 => 011111 => 2 = 1 + 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => 00101 => 3 = 2 + 1
([],6)
=> [1,1,1,1,1,1]
=> 1111110 => 0111111 => 2 = 1 + 1
([(4,5)],6)
=> [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> 11000 => 00011 => 4 = 3 + 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => 001001 => 3 = 2 + 1
([],7)
=> [1,1,1,1,1,1,1]
=> 11111110 => 01111111 => 2 = 1 + 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> 10111110 => 01111101 => 2 = 1 + 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => 01111001 => 2 = 1 + 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> 1101110 => 0111011 => 2 = 1 + 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> 1010110 => 0110101 => 2 = 1 + 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => 01111001 => 2 = 1 + 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> 1001010 => 0101001 => 2 = 1 + 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> 1000100 => 0010001 => 3 = 2 + 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => 01100001 => 2 = 1 + 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> 10001110 => 01110001 => 2 = 1 + 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> 110010 => 010011 => 2 = 1 + 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> 10000000000000110 => ? => ? = 1 + 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1 + 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> 1000000001110 => ? => ? = 1 + 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> 1000000000011110 => ? => ? = 1 + 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> 10000000000001110 => ? => ? = 1 + 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> 100000000110 => 011000000001 => ? = 1 + 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> 10000000000110 => ? => ? = 1 + 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1 + 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> 1000000000001110 => ? => ? = 1 + 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1 + 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> 100000000011110 => ? => ? = 1 + 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1 + 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> 100000000000000110 => ? => ? = 1 + 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1 + 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1 + 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1 + 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1 + 1
Description
The position of the first one in a binary word after appending a 1 at the end.
Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Matching statistic: St000297
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [3]
=> 1000 => 1
([],4)
=> [1,1,1,1]
=> [4]
=> 10000 => 1
([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 10010 => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 1100 => 2
([],5)
=> [1,1,1,1,1]
=> [5]
=> 100000 => 1
([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 100010 => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 10100 => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 100110 => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [2,2,1]
=> 11010 => 2
([],6)
=> [1,1,1,1,1,1]
=> [6]
=> 1000000 => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [4,2]
=> 100100 => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 101010 => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [3,3]
=> 11000 => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [3,2,1]
=> 101010 => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [2,2,2]
=> 11100 => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [2,2,1,1]
=> 110110 => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [7]
=> 10000000 => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [6,1]
=> 10000010 => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [5,2]
=> 1000100 => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [4,2,1]
=> 1001010 => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [5,1,1]
=> 10000110 => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [3,2,1,1]
=> 1010110 => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [2,2,1,1,1]
=> 1101110 => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [3,1,1,1,1]
=> 10011110 => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [4,1,1,1]
=> 10001110 => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [3,2,2]
=> 101100 => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 10011111111111110 => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> 1001111111110 => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [4,1,1,1,1,1,1,1,1]
=> 1000111111110 => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1,1]
=> 1000011111111110 => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1,1]
=> 10001111111111110 => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [3,1,1,1,1,1,1,1,1]
=> 100111111110 => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1]
=> 10011111111110 => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1001111111111110 => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1,1]
=> 1000111111111110 => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [6,1,1,1,1,1]
=> 100000111110 => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111110 => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [5,1,1,1,1,1,1,1,1,1]
=> 100001111111110 => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111110 => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
=> 100111111111111110 => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1,1]
=> 100011111111110 => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [4,1,1,1,1,1,1,1,1,1]
=> 10001111111110 => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [3,1,1,1,1,1,1,1,1,1,1,1,1]
=> 1001111111111110 => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [3,1,1,1,1,1,1,1,1,1]
=> 1001111111110 => ? = 1
Description
The number of leading ones in a binary word.
Matching statistic: St000382
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00207: Standard tableaux —horizontal strip sizes⟶ Integer compositions
St000382: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [1,1,1,2,2] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [1,1,2,3] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [1,1,1,1,3] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [1,2,4] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [2,5] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [1,1,5] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [1,1,1,4] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [1,3,3] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,5,6,7,8,9,10,11,12],[2],[3],[4]]
=> ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14,15],[2],[3],[4],[5]]
=> ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3],[4]]
=> ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13],[2],[3]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15],[2],[3],[4]]
=> ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ? => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14],[2],[3],[4],[5]]
=> ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16,17],[2],[3]]
=> ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ? => ? = 1
Description
The first part of an integer composition.
Matching statistic: St000383
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00095: Integer partitions —to binary word⟶ Binary words
Mp00097: Binary words —delta morphism⟶ Integer compositions
St000383: Integer compositions ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> 1110 => [3,1] => 1
([],4)
=> [1,1,1,1]
=> 11110 => [4,1] => 1
([(2,3)],4)
=> [2,1,1]
=> 10110 => [1,1,2,1] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> 1100 => [2,2] => 2
([],5)
=> [1,1,1,1,1]
=> 111110 => [5,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => [1,2,2,1] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> 11010 => [2,1,1,1] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => [1,1,1,2] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 100110 => [1,2,2,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> 10100 => [1,1,1,2] => 2
([],6)
=> [1,1,1,1,1,1]
=> 1111110 => [6,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> 11100 => [3,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> 1000110 => [1,3,2,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> 11000 => [2,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> 100100 => [1,2,1,2] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> 11111110 => [7,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => [1,2,4,1] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> 1101110 => [2,1,3,1] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> 1010110 => [1,1,1,1,2,1] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> 10011110 => [1,2,4,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> 1001010 => [1,2,1,1,1,1] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> 1000100 => [1,3,1,2] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> 10000110 => [1,4,2,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> 10001110 => [1,3,3,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> 110010 => [2,2,1,1] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> 10000000000000110 => ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> 1000000001110 => ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> 1000000000011110 => ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> 10000000000001110 => ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> 100000000110 => ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> 10000000000110 => ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> 1000000000001110 => ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> 100000111110 => [1,5,5,1] => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> 100000001110 => ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> 100000000011110 => ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> 100000000000110 => ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> 100000000000000110 => ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> 100000000001110 => ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> 10000000001110 => ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> 1000000000000110 => ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> 1000000000110 => ? => ? = 1
Description
The last part of an integer composition.
Matching statistic: St000733
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [[1,3,4],[2]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [[1,3,4,5],[2]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [[1,3,5],[2,4]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [[1,4,5],[2],[3]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [[1,4],[2,5],[3]]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [[1,3,4,5,6],[2]]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [[1,3,5,6],[2,4]]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [[1,4,5,6],[2],[3]]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [[1,4,6],[2,5],[3]]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [[1,5,6],[2],[3],[4]]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [[1,5],[2,6],[3],[4]]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [[1,3,4,5,6,7],[2]]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [[1,3,5,6,7],[2,4]]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [[1,4,6,7],[2,5],[3]]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [[1,4,5,6,7],[2],[3]]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [[1,5,7],[2,6],[3],[4]]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [[1,6],[2,7],[3],[4],[5]]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [[1,6,7],[2],[3],[4],[5]]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [[1,5,6,7],[2],[3],[4]]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [[1,4,7],[2,5],[3,6]]
=> 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> [[1,10,11,12],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ?
=> ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ?
=> ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> [[1,10,11],[2],[3],[4],[5],[6],[7],[8],[9]]
=> ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ?
=> ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ?
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ?
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ?
=> ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ?
=> ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ?
=> ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ?
=> ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ?
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ?
=> ? = 1
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000745
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00045: Integer partitions —reading tableau⟶ Standard tableaux
Mp00084: Standard tableaux —conjugate⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
([(2,3)],4)
=> [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,5],[2,7],[3],[4],[6]]
=> [[1,2,3,4,6],[5,7]]
=> 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,4,7],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6],[7]]
=> 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,6,7],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6],[7]]
=> 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,3,6,7],[2,5],[4]]
=> [[1,2,4],[3,5],[6],[7]]
=> 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,5,6,7],[3,4]]
=> [[1,3],[2,4],[5],[6],[7]]
=> 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,4,5,6,7],[2],[3]]
=> [[1,2,3],[4],[5],[6],[7]]
=> 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,5,6,7],[2],[3],[4]]
=> [[1,2,3,4],[5],[6],[7]]
=> 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,3,4],[2,6,7],[5]]
=> [[1,2,5],[3,6],[4,7]]
=> 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ?
=> ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,5,6,7,8,9,10,11,12],[2],[3],[4]]
=> ?
=> ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14,15],[2],[3],[4],[5]]
=> ?
=> ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15,16],[2],[3],[4]]
=> ?
=> ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,4,5,6,7,8,9,10,11],[2],[3]]
=> ?
=> ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13],[2],[3]]
=> ?
=> ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ?
=> ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14,15],[2],[3],[4]]
=> ?
=> ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,7,8,9,10,11],[2],[3],[4],[5],[6]]
=> ?
=> ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ?
=> ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,6,7,8,9,10,11,12,13,14],[2],[3],[4],[5]]
=> ?
=> ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14],[2],[3]]
=> ?
=> ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15,16,17],[2],[3]]
=> ?
=> ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13,14],[2],[3],[4]]
=> ?
=> ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,5,6,7,8,9,10,11,12,13],[2],[3],[4]]
=> ?
=> ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,4,5,6,7,8,9,10,11,12,13,14,15],[2],[3]]
=> ?
=> ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,4,5,6,7,8,9,10,11,12],[2],[3]]
=> ?
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000996
Mp00037: Graphs —to partition of connected components⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000996: Permutations ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
St000996: Permutations ⟶ ℤResult quality: 89% ●values known / values provided: 89%●distinct values known / distinct values provided: 100%
Values
([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
([(0,1),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
([],6)
=> [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
([(4,5)],6)
=> [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
([(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
([(2,5),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(2,5),(3,4)],6)
=> [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
([(2,5),(3,4),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(1,2),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
([(3,4),(3,5),(4,5)],6)
=> [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,5),(1,5),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,5),(1,4),(2,3)],6)
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(1,2),(3,4),(3,5),(4,5)],6)
=> [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
([],7)
=> [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 1
([(5,6)],7)
=> [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 1
([(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 1
([(3,6),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(2,6),(3,6),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(3,6),(4,5)],7)
=> [2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => 1
([(3,6),(4,5),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(2,3),(4,6),(5,6)],7)
=> [3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => 1
([(4,5),(4,6),(5,6)],7)
=> [3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => 1
([(2,6),(3,6),(4,5),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(1,2),(3,6),(4,6),(5,6)],7)
=> [4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => 1
([(3,6),(4,5),(4,6),(5,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> [5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => 1
([(3,5),(3,6),(4,5),(4,6)],7)
=> [4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => 1
([(1,6),(2,6),(3,5),(4,5)],7)
=> [3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => 1
([(2,10),(3,6),(3,10),(3,13),(4,9),(4,11),(4,14),(4,15),(5,12),(5,13),(5,14),(5,15),(6,12),(6,14),(6,15),(7,8),(7,9),(7,12),(7,14),(7,15),(8,11),(8,13),(8,14),(8,15),(9,11),(9,13),(9,15),(10,12),(10,14),(10,15),(11,12),(11,14),(11,15),(12,13),(13,14),(13,15)],16)
=> [14,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14],[15],[16]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,11),(4,5),(4,7),(4,10),(5,6),(5,9),(6,7),(6,8),(6,10),(6,11),(7,8),(7,9),(7,11),(8,9),(8,10),(9,10),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 1
([(3,9),(4,5),(4,11),(5,10),(6,10),(6,11),(7,8),(7,11),(8,9),(8,10),(9,11),(10,11)],12)
=> [9,1,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11],[12]]
=> ? => ? = 1
([(3,11),(4,10),(5,8),(5,13),(6,9),(6,13),(7,12),(7,13),(8,10),(8,12),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(4,12),(5,11),(6,13),(6,14),(7,9),(7,14),(8,10),(8,14),(9,11),(9,13),(10,12),(10,13),(11,14),(12,14),(13,14)],15)
=> [11,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14],[15]]
=> ? => ? = 1
([(3,12),(3,13),(4,5),(4,13),(5,12),(6,9),(6,10),(6,11),(7,8),(7,10),(7,11),(7,12),(8,9),(8,11),(8,13),(9,10),(9,12),(10,13),(11,12),(11,13),(12,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(3,13),(4,14),(4,15),(5,6),(5,15),(6,14),(7,10),(7,11),(7,12),(7,15),(8,9),(8,11),(8,12),(8,13),(9,10),(9,12),(9,15),(10,11),(10,13),(10,14),(11,14),(11,15),(12,13),(12,14),(13,15),(14,15)],16)
=> [13,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15],[16]]
=> ? => ? = 1
([(2,6),(2,10),(3,7),(3,8),(3,9),(4,7),(4,8),(4,9),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(7,10),(8,10),(9,10)],11)
=> [9,1,1]
=> [[1,2,3,4,5,6,7,8,9],[10],[11]]
=> ? => ? = 1
([(2,9),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(6,10),(6,11),(6,12),(7,8),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(9,10),(9,11),(9,12)],13)
=> [11,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13]]
=> ? => ? = 1
([(2,9),(2,10),(2,11),(2,14),(3,6),(3,7),(3,8),(3,13),(4,6),(4,7),(4,8),(4,13),(4,14),(5,9),(5,10),(5,11),(5,13),(5,14),(6,9),(6,10),(6,11),(6,12),(6,14),(7,9),(7,10),(7,11),(7,12),(7,14),(8,9),(8,10),(8,11),(8,12),(8,14),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13),(12,14),(13,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 1
([(3,10),(4,9),(5,8),(5,9),(6,7),(6,10),(7,8),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
([(3,11),(4,9),(4,14),(5,6),(5,11),(5,13),(6,12),(6,14),(7,12),(7,13),(7,14),(8,10),(8,13),(8,14),(9,10),(9,13),(10,12),(10,14),(11,12),(11,14),(12,13),(13,14)],15)
=> [12,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14],[15]]
=> ? => ? = 1
([(3,8),(3,12),(4,7),(4,11),(5,9),(5,11),(5,12),(6,10),(6,11),(6,12),(7,9),(7,12),(8,10),(8,11),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(5,10),(6,9),(7,8),(8,10),(9,10)],11)
=> [6,1,1,1,1,1]
=> [[1,2,3,4,5,6],[7],[8],[9],[10],[11]]
=> ? => ? = 1
([(2,9),(2,13),(3,10),(3,11),(3,12),(4,10),(4,11),(4,12),(5,7),(5,8),(5,9),(5,13),(6,7),(6,10),(6,11),(6,12),(6,13),(7,10),(7,11),(7,12),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(10,13),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 1
([(3,8),(4,10),(5,9),(6,7),(6,10),(7,9),(8,10),(9,10)],11)
=> [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
([(3,12),(4,11),(5,7),(6,8),(7,11),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(4,11),(5,10),(6,12),(7,13),(8,9),(8,12),(9,13),(10,12),(11,13),(12,13)],14)
=> [10,1,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13],[14]]
=> ? => ? = 1
([(2,4),(2,13),(3,11),(3,12),(3,13),(4,11),(4,12),(5,8),(5,9),(5,10),(5,13),(6,8),(6,9),(6,10),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,13),(12,13)],14)
=> [12,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12],[13],[14]]
=> ? => ? = 1
([(2,4),(2,15),(3,9),(3,15),(3,16),(4,9),(4,16),(5,11),(5,12),(5,13),(5,16),(6,11),(6,12),(6,13),(6,16),(7,10),(7,14),(7,15),(7,16),(8,11),(8,12),(8,13),(8,14),(8,16),(9,10),(9,14),(9,15),(10,11),(10,12),(10,13),(10,16),(11,14),(11,15),(12,14),(12,15),(13,14),(13,15),(14,16),(15,16)],17)
=> [15,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15],[16],[17]]
=> ? => ? = 1
([(3,11),(3,12),(3,13),(4,6),(4,8),(4,10),(5,9),(5,11),(5,12),(5,13),(6,7),(6,8),(6,9),(7,10),(7,11),(7,12),(7,13),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13)],14)
=> [11,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11],[12],[13],[14]]
=> ? => ? = 1
([(3,4),(3,12),(4,11),(5,11),(5,12),(6,9),(6,10),(7,8),(7,10),(7,11),(8,9),(8,12),(9,10),(9,11),(10,12),(11,12)],13)
=> [10,1,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12],[13]]
=> ? => ? = 1
([(2,5),(2,12),(2,13),(2,14),(3,4),(3,9),(3,10),(3,11),(4,12),(4,13),(4,14),(5,9),(5,10),(5,11),(6,9),(6,10),(6,11),(6,12),(6,13),(6,14),(7,9),(7,10),(7,11),(7,12),(7,13),(7,14),(8,9),(8,10),(8,11),(8,12),(8,13),(8,14),(9,12),(9,13),(9,14),(10,12),(10,13),(10,14),(11,12),(11,13),(11,14)],15)
=> [13,1,1]
=> [[1,2,3,4,5,6,7,8,9,10,11,12,13],[14],[15]]
=> ? => ? = 1
([(2,11),(3,7),(3,11),(4,8),(4,9),(4,10),(5,8),(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,11),(9,11),(10,11)],12)
=> [10,1,1]
=> [[1,2,3,4,5,6,7,8,9,10],[11],[12]]
=> ? => ? = 1
Description
The number of exclusive left-to-right maxima of a permutation.
This is the number of left-to-right maxima that are not right-to-left minima.
The following 26 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000657The smallest part of an integer composition. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000990The first ascent of a permutation. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001075The minimal size of a block of a set partition. St001571The Cartan determinant of the integer partition. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001316The domatic number of a graph. St001829The common independence number of a graph. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St001119The length of a shortest maximal path in a graph. St001322The size of a minimal independent dominating set in a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000310The minimal degree of a vertex of a graph. St000654The first descent of a permutation. St000090The variation of a composition. St000314The number of left-to-right-maxima of a permutation. St001613The binary logarithm of the size of the center of a lattice. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices. St001845The number of join irreducibles minus the rank of a lattice. St001681The number of inclusion-wise minimal subsets of a lattice, whose meet is the bottom element. St001677The number of non-degenerate subsets of a lattice whose meet is the bottom element.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!