Processing math: 100%

Your data matches 44 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000993: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [1,1]
=> [2]
=> 1
[1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,1,2] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[1,2,1] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[2,1,1] => [2,1,1]
=> [1,1]
=> [2]
=> 1
[2,2] => [2,2]
=> [2]
=> [1,1]
=> 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,1,3] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,2,2] => [2,2,1]
=> [2,1]
=> [2,1]
=> 1
[1,3,1] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[2,1,2] => [2,2,1]
=> [2,1]
=> [2,1]
=> 1
[2,2,1] => [2,2,1]
=> [2,1]
=> [2,1]
=> 1
[2,3] => [3,2]
=> [2]
=> [1,1]
=> 2
[3,1,1] => [3,1,1]
=> [1,1]
=> [2]
=> 1
[3,2] => [3,2]
=> [2]
=> [1,1]
=> 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,1,4] => [4,1,1]
=> [1,1]
=> [2]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[1,2,3] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[1,3,2] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[1,4,1] => [4,1,1]
=> [1,1]
=> [2]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [4]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[2,1,3] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [2,1,1]
=> [3,1]
=> 1
[2,2,2] => [2,2,2]
=> [2,2]
=> [2,2]
=> 2
[2,3,1] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[2,4] => [4,2]
=> [2]
=> [1,1]
=> 2
[3,1,1,1] => [3,1,1,1]
=> [1,1,1]
=> [3]
=> 1
[3,1,2] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[3,2,1] => [3,2,1]
=> [2,1]
=> [2,1]
=> 1
[3,3] => [3,3]
=> [3]
=> [1,1,1]
=> 3
[4,1,1] => [4,1,1]
=> [1,1]
=> [2]
=> 1
[4,2] => [4,2]
=> [2]
=> [1,1]
=> 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [6]
=> 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [5]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Mp00040: Integer compositions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001038: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,1,1,1] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,2,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,1,4] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,2,3] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,4,1] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,1,3] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[2,2,2] => [2,2,2]
=> [2,2]
=> [1,1,1,0,0,0]
=> 2
[2,3,1] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4] => [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[3,1,1,1] => [3,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,1,2] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,2,1] => [3,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,3] => [3,3]
=> [3]
=> [1,0,1,0,1,0]
=> 3
[4,1,1] => [4,1,1]
=> [1,1]
=> [1,1,0,0]
=> 1
[4,2] => [4,2]
=> [2]
=> [1,0,1,0]
=> 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1
Description
The minimal height of a column in the parallelogram polyomino associated with the Dyck path.
Matching statistic: St000297
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St000297: Binary words ⟶ ℤResult quality: 69% values known / values provided: 69%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [3]
=> 1000 => 1
[1,1,1,1] => [1,1,1,1]
=> [4]
=> 10000 => 1
[1,1,2] => [2,1,1]
=> [3,1]
=> 10010 => 1
[1,2,1] => [2,1,1]
=> [3,1]
=> 10010 => 1
[2,1,1] => [2,1,1]
=> [3,1]
=> 10010 => 1
[2,2] => [2,2]
=> [2,2]
=> 1100 => 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> 100000 => 1
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,1,3] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[1,2,2] => [2,2,1]
=> [3,2]
=> 10100 => 1
[1,3,1] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> 100010 => 1
[2,1,2] => [2,2,1]
=> [3,2]
=> 10100 => 1
[2,2,1] => [2,2,1]
=> [3,2]
=> 10100 => 1
[2,3] => [3,2]
=> [2,2,1]
=> 11010 => 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> 100110 => 1
[3,2] => [3,2]
=> [2,2,1]
=> 11010 => 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> 1000000 => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[1,2,3] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[1,3,2] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> 1000010 => 1
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[2,1,3] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[2,2,1,1] => [2,2,1,1]
=> [4,2]
=> 100100 => 1
[2,2,2] => [2,2,2]
=> [3,3]
=> 11000 => 2
[2,3,1] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[2,4] => [4,2]
=> [2,2,1,1]
=> 110110 => 2
[3,1,1,1] => [3,1,1,1]
=> [4,1,1]
=> 1000110 => 1
[3,1,2] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[3,2,1] => [3,2,1]
=> [3,2,1]
=> 101010 => 1
[3,3] => [3,3]
=> [2,2,2]
=> 11100 => 3
[4,1,1] => [4,1,1]
=> [3,1,1,1]
=> 1001110 => 1
[4,2] => [4,2]
=> [2,2,1,1]
=> 110110 => 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [7]
=> 10000000 => 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [6,1]
=> 10000010 => 1
[1,8,1,1] => [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
[1,6,3,1] => [6,3,1,1]
=> [4,2,2,1,1,1]
=> 1001101110 => ? = 1
[1,3,6,1] => [6,3,1,1]
=> [4,2,2,1,1,1]
=> 1001101110 => ? = 1
[1,1,8,1] => [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> 100011111110 => ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> [6,4,1,1]
=> 1001000110 => ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[3,1,2,1,1,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,4,1,1,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[4,3,1,2,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,3,1,1,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,2,1,3,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,2,1,2,1,2] => [4,2,2,2,1,1]
=> [6,4,1,1]
=> 1001000110 => ? = 1
[4,2,1,1,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,1,1,4,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[4,1,1,3,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,1,1,2,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> 1000101010 => ? = 1
[4,1,1,1,1,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> 1000011100 => ? = 1
[1,9,2] => [9,2,1]
=> [3,2,1,1,1,1,1,1,1]
=> 101011111110 => ? = 1
[1,7,3] => [7,3,1]
=> [3,2,2,1,1,1,1]
=> 1011011110 => ? = 1
[1,8,1,2] => [8,2,1,1]
=> [4,2,1,1,1,1,1,1]
=> 100101111110 => ? = 1
[1,6,2,2] => [6,2,2,1]
=> [4,3,1,1,1,1]
=> 1010011110 => ? = 1
[1,7,1,1,2] => [7,2,1,1,1]
=> [5,2,1,1,1,1,1]
=> 100010111110 => ? = 1
[1,6,1,1,1,2] => [6,2,1,1,1,1]
=> [6,2,1,1,1,1]
=> 100001011110 => ? = 1
[1,4,2,1,1,2] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,5,1,1,1,1,2] => [5,2,1,1,1,1,1]
=> [7,2,1,1,1]
=> 100000101110 => ? = 1
[1,3,2,1,1,1,2] => [3,2,2,1,1,1,1]
=> [7,3,1]
=> 1000010010 => ? = 1
[1,4,1,1,1,1,1,2] => [4,2,1,1,1,1,1,1]
=> [8,2,1,1]
=> 100000010110 => ? = 1
[1,2,2,1,1,4] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,2,1,2,1,4] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,2,1,1,4,2] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,2,1,1,2,4] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,1,3,1,1,4] => [4,3,1,1,1,1]
=> [6,2,2,1]
=> 1000011010 => ? = 1
[1,1,2,2,1,4] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,1,2,1,4,2] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,1,2,1,2,4] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,1,1,4,2,2] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
[1,1,1,4,1,3] => [4,3,1,1,1,1]
=> [6,2,2,1]
=> 1000011010 => ? = 1
[1,1,1,3,1,4] => [4,3,1,1,1,1]
=> [6,2,2,1]
=> 1000011010 => ? = 1
[1,1,1,2,4,2] => [4,2,2,1,1,1]
=> [6,3,1,1]
=> 1000100110 => ? = 1
Description
The number of leading ones in a binary word.
Mp00040: Integer compositions to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000326: Binary words ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> 1110 => 0111 => 2 = 1 + 1
[1,1,1,1] => [1,1,1,1]
=> 11110 => 01111 => 2 = 1 + 1
[1,1,2] => [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
[1,2,1] => [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
[2,1,1] => [2,1,1]
=> 10110 => 01101 => 2 = 1 + 1
[2,2] => [2,2]
=> 1100 => 0011 => 3 = 2 + 1
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => 011111 => 2 = 1 + 1
[1,1,1,2] => [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
[1,1,2,1] => [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
[1,1,3] => [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
[1,2,1,1] => [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
[1,2,2] => [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
[1,3,1] => [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => 011101 => 2 = 1 + 1
[2,1,2] => [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
[2,2,1] => [2,2,1]
=> 11010 => 01011 => 2 = 1 + 1
[2,3] => [3,2]
=> 10100 => 00101 => 3 = 2 + 1
[3,1,1] => [3,1,1]
=> 100110 => 011001 => 2 = 1 + 1
[3,2] => [3,2]
=> 10100 => 00101 => 3 = 2 + 1
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => 0111111 => 2 = 1 + 1
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
[1,1,1,3] => [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
[1,1,2,2] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[1,1,3,1] => [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
[1,1,4] => [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
[1,2,1,2] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[1,2,2,1] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[1,2,3] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
[1,3,2] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[1,4,1] => [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => 0111101 => 2 = 1 + 1
[2,1,1,2] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[2,1,2,1] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[2,1,3] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[2,2,1,1] => [2,2,1,1]
=> 110110 => 011011 => 2 = 1 + 1
[2,2,2] => [2,2,2]
=> 11100 => 00111 => 3 = 2 + 1
[2,3,1] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[2,4] => [4,2]
=> 100100 => 001001 => 3 = 2 + 1
[3,1,1,1] => [3,1,1,1]
=> 1001110 => 0111001 => 2 = 1 + 1
[3,1,2] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[3,2,1] => [3,2,1]
=> 101010 => 010101 => 2 = 1 + 1
[3,3] => [3,3]
=> 11000 => 00011 => 4 = 3 + 1
[4,1,1] => [4,1,1]
=> 1000110 => 0110001 => 2 = 1 + 1
[4,2] => [4,2]
=> 100100 => 001001 => 3 = 2 + 1
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> 11111110 => 01111111 => 2 = 1 + 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> 10111110 => 01111101 => 2 = 1 + 1
[1,8,1,1] => [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
[1,7,2,1] => [7,2,1,1]
=> 10000010110 => 01101000001 => ? = 1 + 1
[1,6,3,1] => [6,3,1,1]
=> 1000100110 => 0110010001 => ? = 1 + 1
[1,3,6,1] => [6,3,1,1]
=> 1000100110 => 0110010001 => ? = 1 + 1
[1,2,7,1] => [7,2,1,1]
=> 10000010110 => 01101000001 => ? = 1 + 1
[1,1,8,1] => [8,1,1,1]
=> 100000001110 => 011100000001 => ? = 1 + 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> 1001110110 => 0110111001 => ? = 1 + 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[3,1,2,1,1,4] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,4,1,1,1,1] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[4,3,1,2,1,1] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,3,1,1,1,2] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,2,1,3,1,1] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,2,1,2,1,2] => [4,2,2,2,1,1]
=> 1001110110 => 0110111001 => ? = 1 + 1
[4,2,1,1,1,3] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,1,1,4,1,1] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[4,1,1,3,1,2] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,1,1,2,1,3] => [4,3,2,1,1,1]
=> 1010101110 => 0111010101 => ? = 1 + 1
[4,1,1,1,1,4] => [4,4,1,1,1,1]
=> 1100011110 => 0111100011 => ? = 1 + 1
[1,8,2] => [8,2,1]
=> 10000001010 => 01010000001 => ? = 1 + 1
[1,7,1,2] => [7,2,1,1]
=> 10000010110 => 01101000001 => ? = 1 + 1
[1,6,1,1,2] => [6,2,1,1,1]
=> 10000101110 => 01110100001 => ? = 1 + 1
[1,5,1,1,1,2] => [5,2,1,1,1,1]
=> 10001011110 => 01111010001 => ? = 1 + 1
[1,4,1,1,1,1,2] => [4,2,1,1,1,1,1]
=> 10010111110 => 01111101001 => ? = 1 + 1
[1,3,1,1,1,1,1,2] => [3,2,1,1,1,1,1,1]
=> 10101111110 => 01111110101 => ? = 1 + 1
[1,9,2] => [9,2,1]
=> 100000001010 => ? => ? = 1 + 1
[1,7,3] => [7,3,1]
=> 1000010010 => 0100100001 => ? = 1 + 1
[1,8,1,2] => [8,2,1,1]
=> 100000010110 => 011010000001 => ? = 1 + 1
[1,6,2,2] => [6,2,2,1]
=> 1000011010 => 0101100001 => ? = 1 + 1
[1,7,1,1,2] => [7,2,1,1,1]
=> 100000101110 => ? => ? = 1 + 1
[1,4,2,1,1,2] => [4,2,2,1,1,1]
=> 1001101110 => 0111011001 => ? = 1 + 1
[1,5,1,1,1,1,2] => [5,2,1,1,1,1,1]
=> 100010111110 => 011111010001 => ? = 1 + 1
[1,3,2,1,1,1,2] => [3,2,2,1,1,1,1]
=> 1011011110 => 0111101101 => ? = 1 + 1
[1,4,1,1,1,1,1,2] => [4,2,1,1,1,1,1,1]
=> 100101111110 => 011111101001 => ? = 1 + 1
[1,2,2,1,1,4] => [4,2,2,1,1,1]
=> 1001101110 => 0111011001 => ? = 1 + 1
[1,2,1,2,1,4] => [4,2,2,1,1,1]
=> 1001101110 => 0111011001 => ? = 1 + 1
[1,2,1,1,4,2] => [4,2,2,1,1,1]
=> 1001101110 => 0111011001 => ? = 1 + 1
[1,2,1,1,2,4] => [4,2,2,1,1,1]
=> 1001101110 => 0111011001 => ? = 1 + 1
[1,2,1,1,1,5] => [5,2,1,1,1,1]
=> 10001011110 => 01111010001 => ? = 1 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of {1,,n,n+1} that contains n+1, this is the minimal element of the set.
Mp00040: Integer compositions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
St000733: Standard tableaux ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [3]
=> [[1,2,3]]
=> 1
[1,1,1,1] => [1,1,1,1]
=> [4]
=> [[1,2,3,4]]
=> 1
[1,1,2] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[1,2,1] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[2,1,1] => [2,1,1]
=> [3,1]
=> [[1,3,4],[2]]
=> 1
[2,2] => [2,2]
=> [2,2]
=> [[1,2],[3,4]]
=> 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [5]
=> [[1,2,3,4,5]]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,1,3] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[1,2,2] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[1,3,1] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [4,1]
=> [[1,3,4,5],[2]]
=> 1
[2,1,2] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[2,2,1] => [2,2,1]
=> [3,2]
=> [[1,2,5],[3,4]]
=> 1
[2,3] => [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
[3,1,1] => [3,1,1]
=> [3,1,1]
=> [[1,4,5],[2],[3]]
=> 1
[3,2] => [3,2]
=> [2,2,1]
=> [[1,3],[2,5],[4]]
=> 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [6]
=> [[1,2,3,4,5,6]]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,1,4] => [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[1,2,3] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[1,3,2] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[1,4,1] => [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [5,1]
=> [[1,3,4,5,6],[2]]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[2,1,3] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [4,2]
=> [[1,2,5,6],[3,4]]
=> 1
[2,2,2] => [2,2,2]
=> [3,3]
=> [[1,2,3],[4,5,6]]
=> 2
[2,3,1] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[2,4] => [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2
[3,1,1,1] => [3,1,1,1]
=> [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> 1
[3,1,2] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[3,2,1] => [3,2,1]
=> [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> 1
[3,3] => [3,3]
=> [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> 3
[4,1,1] => [4,1,1]
=> [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> 1
[4,2] => [4,2]
=> [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [7]
=> [[1,2,3,4,5,6,7]]
=> 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [6,1]
=> [[1,3,4,5,6,7],[2]]
=> 1
[1,8,1,1] => [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
[1,7,2,1] => [7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 1
[1,6,3,1] => [6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 1
[1,3,6,1] => [6,3,1,1]
=> [4,2,2,1,1,1]
=> [[1,5,10,11],[2,7],[3,9],[4],[6],[8]]
=> ? = 1
[1,2,7,1] => [7,2,1,1]
=> [4,2,1,1,1,1,1]
=> [[1,7,10,11],[2,9],[3],[4],[5],[6],[8]]
=> ? = 1
[1,1,8,1] => [8,1,1,1]
=> [4,1,1,1,1,1,1,1]
=> [[1,9,10,11],[2],[3],[4],[5],[6],[7],[8]]
=> ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[1,1,5,5] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> [6,4,1,1]
=> [[1,4,5,6,11,12],[2,8,9,10],[3],[7]]
=> ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[3,3,3,3] => [3,3,3,3]
=> [4,4,4]
=> [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
=> ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[3,1,2,1,1,4] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,4,1,1,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[4,3,1,2,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,3,1,1,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,2,1,3,1,1] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,2,1,2,1,2] => [4,2,2,2,1,1]
=> [6,4,1,1]
=> [[1,4,5,6,11,12],[2,8,9,10],[3],[7]]
=> ? = 1
[4,2,1,1,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,1,1,4,1,1] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[4,1,1,3,1,2] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,1,1,2,1,3] => [4,3,2,1,1,1]
=> [6,3,2,1]
=> [[1,3,6,10,11,12],[2,5,9],[4,8],[7]]
=> ? = 1
[4,1,1,1,1,4] => [4,4,1,1,1,1]
=> [6,2,2,2]
=> [[1,2,9,10,11,12],[3,4],[5,6],[7,8]]
=> ? = 1
[5,5,1,1] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[5,1,1,5] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> [7,5]
=> [[1,2,3,4,5,11,12],[6,7,8,9,10]]
=> ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,2,3,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,3,2,2,2,2] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[1,5,5,1] => [5,5,1,1]
=> [4,2,2,2,2]
=> [[1,2,11,12],[3,4],[5,6],[7,8],[9,10]]
=> ? = 1
[1,6,5] => [6,5,1]
=> [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? = 1
[2,3,2,2,2,1] => [3,2,2,2,2,1]
=> [6,5,1]
=> [[1,3,4,5,6,12],[2,8,9,10,11],[7]]
=> ? = 1
[2,3,2,3,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
[2,3,3,2,2] => [3,3,2,2,2]
=> [5,5,2]
=> [[1,2,5,6,7],[3,4,10,11,12],[8,9]]
=> ? = 2
Description
The row containing the largest entry of a standard tableau.
Matching statistic: St000382
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00207: Standard tableaux horizontal strip sizesInteger compositions
St000382: Integer compositions ⟶ ℤResult quality: 55% values known / values provided: 55%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [1,1,1] => 1
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [1,1,1,1] => 1
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [1,1,2] => 1
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [2,2] => 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [1,1,1,1,1] => 1
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [1,1,1,2] => 1
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [1,2,2] => 1
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [1,1,3] => 1
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [2,3] => 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,1] => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [1,1,1,1,2] => 1
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[2,1,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[2,2,1,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [1,1,2,2] => 1
[2,2,2] => [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [2,2,2] => 2
[2,3,1] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[2,4] => [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
[3,1,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [1,1,1,3] => 1
[3,1,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[3,2,1] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [1,2,3] => 1
[3,3] => [3,3]
=> [[1,2,3],[4,5,6]]
=> [3,3] => 3
[4,1,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [1,1,4] => 1
[4,2] => [4,2]
=> [[1,2,5,6],[3,4]]
=> [2,4] => 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [1,1,1,1,1,1,1] => 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [1,1,1,1,1,2] => 1
[1,8,1,1] => [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
[1,7,2,1] => [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? => ? = 1
[1,6,3,1] => [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? => ? = 1
[1,5,4,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [1,1,4,5] => ? = 1
[1,4,5,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [1,1,4,5] => ? = 1
[1,3,6,1] => [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ? => ? = 1
[1,2,7,1] => [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ? => ? = 1
[1,1,8,1] => [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ? => ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> [[1,4,11,12],[2,6],[3,8],[5,10],[7],[9]]
=> ? => ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[2,1,4,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? => ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[3,1,2,1,1,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[3,1,3,5] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[4,4,1,1,1,1] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[4,3,1,2,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,3,1,1,1,2] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,2,1,3,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,2,1,2,1,2] => [4,2,2,2,1,1]
=> [[1,4,11,12],[2,6],[3,8],[5,10],[7],[9]]
=> ? => ? = 1
[4,2,1,1,1,3] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,1,1,4,1,1] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[4,1,1,3,1,2] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,1,1,2,1,3] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ? => ? = 1
[4,1,1,1,1,4] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ? => ? = 1
[4,1,2,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[5,4,1,2] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[5,3,1,3] => [5,3,3,1]
=> [[1,3,4,11,12],[2,6,7],[5,9,10],[8]]
=> [1,3,3,5] => ? = 1
[5,2,1,4] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [1,2,4,5] => ? = 1
[1,2,2,2,2,2,1] => [2,2,2,2,2,1,1]
=> [[1,4],[2,6],[3,8],[5,10],[7,12],[9],[11]]
=> ? => ? = 1
[1,2,2,2,3,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,2,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> ? => ? = 1
[1,2,2,4,3] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
[1,2,3,4,2] => [4,3,2,2,1]
=> [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]]
=> [1,2,2,3,4] => ? = 1
Description
The first part of an integer composition.
Mp00040: Integer compositions to partitionInteger partitions
Mp00095: Integer partitions to binary wordBinary words
Mp00097: Binary words delta morphismInteger compositions
St000383: Integer compositions ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 83%
Values
[1,1,1] => [1,1,1]
=> 1110 => [3,1] => 1
[1,1,1,1] => [1,1,1,1]
=> 11110 => [4,1] => 1
[1,1,2] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[1,2,1] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[2,1,1] => [2,1,1]
=> 10110 => [1,1,2,1] => 1
[2,2] => [2,2]
=> 1100 => [2,2] => 2
[1,1,1,1,1] => [1,1,1,1,1]
=> 111110 => [5,1] => 1
[1,1,1,2] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,1,2,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,1,3] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[1,2,1,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[1,2,2] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[1,3,1] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[2,1,1,1] => [2,1,1,1]
=> 101110 => [1,1,3,1] => 1
[2,1,2] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[2,2,1] => [2,2,1]
=> 11010 => [2,1,1,1] => 1
[2,3] => [3,2]
=> 10100 => [1,1,1,2] => 2
[3,1,1] => [3,1,1]
=> 100110 => [1,2,2,1] => 1
[3,2] => [3,2]
=> 10100 => [1,1,1,2] => 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> 1111110 => [6,1] => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,1,3] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,1,2,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,1,3,1] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,1,4] => [4,1,1]
=> 1000110 => [1,3,2,1] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[1,2,1,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,2,2,1] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[1,2,3] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[1,3,1,1] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[1,3,2] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[1,4,1] => [4,1,1]
=> 1000110 => [1,3,2,1] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> 1011110 => [1,1,4,1] => 1
[2,1,1,2] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[2,1,2,1] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[2,1,3] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[2,2,1,1] => [2,2,1,1]
=> 110110 => [2,1,2,1] => 1
[2,2,2] => [2,2,2]
=> 11100 => [3,2] => 2
[2,3,1] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[2,4] => [4,2]
=> 100100 => [1,2,1,2] => 2
[3,1,1,1] => [3,1,1,1]
=> 1001110 => [1,2,3,1] => 1
[3,1,2] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[3,2,1] => [3,2,1]
=> 101010 => [1,1,1,1,1,1] => 1
[3,3] => [3,3]
=> 11000 => [2,3] => 3
[4,1,1] => [4,1,1]
=> 1000110 => [1,3,2,1] => 1
[4,2] => [4,2]
=> 100100 => [1,2,1,2] => 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> 11111110 => [7,1] => 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> 10111110 => [1,1,5,1] => 1
[1,8,1,1] => [8,1,1,1]
=> 100000001110 => ? => ? = 1
[1,7,2,1] => [7,2,1,1]
=> 10000010110 => [1,5,1,1,2,1] => ? = 1
[1,6,3,1] => [6,3,1,1]
=> 1000100110 => ? => ? = 1
[1,5,4,1] => [5,4,1,1]
=> 101000110 => [1,1,1,3,2,1] => ? = 1
[1,4,5,1] => [5,4,1,1]
=> 101000110 => [1,1,1,3,2,1] => ? = 1
[1,3,6,1] => [6,3,1,1]
=> 1000100110 => ? => ? = 1
[1,2,7,1] => [7,2,1,1]
=> 10000010110 => [1,5,1,1,2,1] => ? = 1
[1,1,8,1] => [8,1,1,1]
=> 100000001110 => ? => ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> 1100011110 => [2,3,4,1] => ? = 1
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> 1100011110 => [2,3,4,1] => ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> 1100011110 => [2,3,4,1] => ? = 1
[1,1,5,5] => [5,5,1,1]
=> 110000110 => [2,4,2,1] => ? = 1
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,2,2,2,2,2] => [2,2,2,2,2,2]
=> 11111100 => [6,2] => ? = 2
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> 1001110110 => ? => ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[2,1,4,5] => [5,4,2,1]
=> 101001010 => [1,1,1,2,1,1,1,1] => ? = 1
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> 101111010 => [1,1,4,1,1,1] => ? = 1
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,2,2,1,3] => [3,3,2,2,1,1]
=> 110110110 => [2,1,2,1,2,1] => ? = 1
[3,1,2,1,1,4] => [4,3,2,1,1,1]
=> 1010101110 => ? => ? = 1
Description
The last part of an integer composition.
Matching statistic: St000745
Mp00040: Integer compositions to partitionInteger partitions
Mp00045: Integer partitions reading tableauStandard tableaux
Mp00084: Standard tableaux conjugateStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [[1,2,3]]
=> 1
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [[1,2,3,4]]
=> 1
[1,1,2] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[1,2,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[2,1,1] => [2,1,1]
=> [[1,4],[2],[3]]
=> [[1,2,3],[4]]
=> 1
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [[1,3],[2,4]]
=> 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [[1,2,3,4,5]]
=> 1
[1,1,1,2] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,2,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,1,3] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[1,2,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[1,2,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[1,3,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[2,1,1,1] => [2,1,1,1]
=> [[1,5],[2],[3],[4]]
=> [[1,2,3,4],[5]]
=> 1
[2,1,2] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[2,2,1] => [2,2,1]
=> [[1,3],[2,5],[4]]
=> [[1,2,4],[3,5]]
=> 1
[2,3] => [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
[3,1,1] => [3,1,1]
=> [[1,4,5],[2],[3]]
=> [[1,2,3],[4],[5]]
=> 1
[3,2] => [3,2]
=> [[1,2,5],[3,4]]
=> [[1,3],[2,4],[5]]
=> 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6]]
=> 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,1,3] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,1,2,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,1,3,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,1,4] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[1,2,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,2,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[1,2,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[1,3,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[1,3,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[1,4,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,6],[2],[3],[4],[5]]
=> [[1,2,3,4,5],[6]]
=> 1
[2,1,1,2] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[2,1,2,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[2,1,3] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[2,2,1,1] => [2,2,1,1]
=> [[1,4],[2,6],[3],[5]]
=> [[1,2,3,5],[4,6]]
=> 1
[2,2,2] => [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [[1,3,5],[2,4,6]]
=> 2
[2,3,1] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[2,4] => [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
[3,1,1,1] => [3,1,1,1]
=> [[1,5,6],[2],[3],[4]]
=> [[1,2,3,4],[5],[6]]
=> 1
[3,1,2] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[3,2,1] => [3,2,1]
=> [[1,3,6],[2,5],[4]]
=> [[1,2,4],[3,5],[6]]
=> 1
[3,3] => [3,3]
=> [[1,2,3],[4,5,6]]
=> [[1,4],[2,5],[3,6]]
=> 3
[4,1,1] => [4,1,1]
=> [[1,4,5,6],[2],[3]]
=> [[1,2,3],[4],[5],[6]]
=> 1
[4,2] => [4,2]
=> [[1,2,5,6],[3,4]]
=> [[1,3],[2,4],[5],[6]]
=> 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [[1,2,3,4,5,6,7]]
=> 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [[1,7],[2],[3],[4],[5],[6]]
=> [[1,2,3,4,5,6],[7]]
=> 1
[1,8,1,1] => [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
[1,7,2,1] => [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ?
=> ? = 1
[1,6,3,1] => [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ?
=> ? = 1
[1,5,4,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 1
[1,4,5,1] => [5,4,1,1]
=> [[1,4,5,6,11],[2,8,9,10],[3],[7]]
=> [[1,2,3,7],[4,8],[5,9],[6,10],[11]]
=> ? = 1
[1,3,6,1] => [6,3,1,1]
=> [[1,4,5,9,10,11],[2,7,8],[3],[6]]
=> ?
=> ? = 1
[1,2,7,1] => [7,2,1,1]
=> [[1,4,7,8,9,10,11],[2,6],[3],[5]]
=> ?
=> ? = 1
[1,1,8,1] => [8,1,1,1]
=> [[1,5,6,7,8,9,10,11],[2],[3],[4]]
=> ?
=> ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ?
=> ? = 1
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ?
=> ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> [[1,6,7,8],[2,10,11,12],[3],[4],[5],[9]]
=> ?
=> ? = 1
[1,1,5,5] => [5,5,1,1]
=> [[1,4,5,6,7],[2,9,10,11,12],[3],[8]]
=> ?
=> ? = 1
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,2,4,4] => [4,4,2,2]
=> [[1,2,7,8],[3,4,11,12],[5,6],[9,10]]
=> [[1,3,5,9],[2,4,6,10],[7,11],[8,12]]
=> ? = 2
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> [[1,4,11,12],[2,6],[3,8],[5,10],[7],[9]]
=> ?
=> ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[2,1,4,5] => [5,4,2,1]
=> [[1,3,6,7,12],[2,5,10,11],[4,9],[8]]
=> [[1,2,4,8],[3,5,9],[6,10],[7,11],[12]]
=> ? = 1
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> [[1,4,7,10],[2,5,8,11],[3,6,9,12]]
=> ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [[1,3,12],[2,5],[4,7],[6,9],[8,11],[10]]
=> [[1,2,4,6,8,10],[3,5,7,9,11],[12]]
=> ? = 1
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,2,3,4] => [4,3,3,2]
=> [[1,2,5,12],[3,4,8],[6,7,11],[9,10]]
=> [[1,3,6,9],[2,4,7,10],[5,8,11],[12]]
=> ? = 2
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> [[1,5,8,12],[2,7,11],[3,10],[4],[6],[9]]
=> ?
=> ? = 1
[3,1,2,3,1,2] => [3,3,2,2,1,1]
=> [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]]
=> [[1,2,3,5,7,10],[4,6,8,11],[9,12]]
=> ? = 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000996
Mp00040: Integer compositions to partitionInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000996: Permutations ⟶ ℤResult quality: 52% values known / values provided: 52%distinct values known / distinct values provided: 100%
Values
[1,1,1] => [1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => 1
[1,1,1,1] => [1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => 1
[1,1,2] => [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[1,2,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[2,1,1] => [2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => 1
[2,2] => [2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => 1
[1,1,1,2] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,2,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,1,3] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[1,2,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[1,2,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[1,3,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[2,1,1,1] => [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => 1
[2,1,2] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[2,2,1] => [2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => 1
[2,3] => [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
[3,1,1] => [3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => 1
[3,2] => [3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,1,1,3] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,1,2,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[1,1,3,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[1,1,4] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[1,2,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[1,2,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[1,2,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[1,3,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[1,3,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[1,4,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => 1
[2,1,1,2] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[2,1,2,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[2,1,3] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[2,2,1,1] => [2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => 1
[2,2,2] => [2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => 2
[2,3,1] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[2,4] => [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
[3,1,1,1] => [3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => 1
[3,1,2] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[3,2,1] => [3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => 1
[3,3] => [3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 3
[4,1,1] => [4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => 1
[4,2] => [4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => 1
[1,8,1,1] => [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
[1,7,2,1] => [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 1
[1,6,3,1] => [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 1
[1,5,4,1] => [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 1
[1,4,5,1] => [5,4,1,1]
=> [[1,2,3,4,5],[6,7,8,9],[10],[11]]
=> [11,10,6,7,8,9,1,2,3,4,5] => ? = 1
[1,3,6,1] => [6,3,1,1]
=> [[1,2,3,4,5,6],[7,8,9],[10],[11]]
=> ? => ? = 1
[1,2,7,1] => [7,2,1,1]
=> [[1,2,3,4,5,6,7],[8,9],[10],[11]]
=> ? => ? = 1
[1,1,8,1] => [8,1,1,1]
=> [[1,2,3,4,5,6,7,8],[9],[10],[11]]
=> ? => ? = 1
[1,1,1,1,4,4] => [4,4,1,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11],[12]]
=> ? => ? = 1
[1,1,2,2,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[1,1,2,1,3,4] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[1,1,3,3,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[1,1,3,2,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[1,1,3,1,2,4] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[1,1,4,4,1,1] => [4,4,1,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11],[12]]
=> ? => ? = 1
[1,1,4,3,1,2] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[1,1,4,2,1,3] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[1,1,4,1,1,4] => [4,4,1,1,1,1]
=> [[1,2,3,4],[5,6,7,8],[9],[10],[11],[12]]
=> ? => ? = 1
[1,1,5,5] => [5,5,1,1]
=> [[1,2,3,4,5],[6,7,8,9,10],[11],[12]]
=> ? => ? = 1
[2,2,1,1,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,2,2,2,2,2] => [2,2,2,2,2,2]
=> [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]
=> [11,12,9,10,7,8,5,6,3,4,1,2] => ? = 2
[2,2,2,1,2,3] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[2,2,3,3,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,2,3,2,1,2] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[2,2,3,1,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,2,4,4] => [4,4,2,2]
=> [[1,2,3,4],[5,6,7,8],[9,10],[11,12]]
=> [11,12,9,10,5,6,7,8,1,2,3,4] => ? = 2
[2,1,1,2,3,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,1,1,1,3,4] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[2,1,2,3,2,2] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[2,1,2,2,2,3] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[2,1,2,1,2,4] => [4,2,2,2,1,1]
=> [[1,2,3,4],[5,6],[7,8],[9,10],[11],[12]]
=> ? => ? = 1
[2,1,3,4,1,1] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[2,1,3,3,1,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,1,3,2,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[2,1,3,1,1,4] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[2,1,4,5] => [5,4,2,1]
=> [[1,2,3,4,5],[6,7,8,9],[10,11],[12]]
=> [12,10,11,6,7,8,9,1,2,3,4,5] => ? = 1
[3,3,1,1,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,3,2,2,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,3,2,1,1,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,3,3,3] => [3,3,3,3]
=> [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
=> ? => ? = 3
[3,2,1,2,2,2] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[3,2,1,1,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,2,2,3,1,1] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,2,2,2,1,2] => [3,2,2,2,2,1]
=> [[1,2,3],[4,5],[6,7],[8,9],[10,11],[12]]
=> ? => ? = 1
[3,2,2,1,1,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,2,3,4] => [4,3,3,2]
=> [[1,2,3,4],[5,6,7],[8,9,10],[11,12]]
=> [11,12,8,9,10,5,6,7,1,2,3,4] => ? = 2
[3,1,1,3,2,2] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,1,1,2,2,3] => [3,3,2,2,1,1]
=> [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]]
=> [12,11,9,10,7,8,4,5,6,1,2,3] => ? = 1
[3,1,1,1,2,4] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
[3,1,2,4,1,1] => [4,3,2,1,1,1]
=> [[1,2,3,4],[5,6,7],[8,9],[10],[11],[12]]
=> ? => ? = 1
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
Matching statistic: St000990
Mp00040: Integer compositions to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
St000990: Permutations ⟶ ℤResult quality: 42% values known / values provided: 42%distinct values known / distinct values provided: 67%
Values
[1,1,1] => [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,1,1] => [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 1
[1,1,2] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[1,2,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,1,1] => [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[2,2] => [2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,1,1,1,1] => [1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,5,4,3,2] => 1
[1,1,1,2] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,2,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,1,3] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,2,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[1,2,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,3,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[2,1,1,1] => [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => 1
[2,1,2] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[2,2,1] => [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[2,3] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[3,1,1] => [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[3,2] => [3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 2
[1,1,1,1,1,1] => [1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,7,6,5,4,3,2] => ? = 1
[1,1,1,1,2] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,2,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,1,3] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,1,2,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,1,2,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,1,3,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,1,4] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[1,2,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[1,2,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,2,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[1,2,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,3,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[1,3,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[1,4,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[2,1,1,1,1] => [2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,4,3,2] => 1
[2,1,1,2] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[2,1,2,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[2,1,3] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[2,2,1,1] => [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[2,2,2] => [2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 2
[2,3,1] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[2,4] => [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[3,1,1,1] => [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[3,1,2] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[3,2,1] => [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 1
[3,3] => [3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 3
[4,1,1] => [4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[4,2] => [4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 2
[1,1,1,1,1,1,1] => [1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,8,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,2] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,2,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,3] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => 1
[1,1,1,2,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,2,2] => [2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,4,6,5,3,2] => 1
[1,1,1,3,1] => [3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5,4,6,3,2] => 1
[1,1,2,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,2,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[2,1,1,1,1,1] => [2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,6,7,5,4,3,2] => ? = 1
[1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9,8,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,2] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,2,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,1,3] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,1,1,2,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,1,2,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,1,3,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,1,2,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,1,2,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,2,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,1,3,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,2,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,1,2,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,2,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,2,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,1,3,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,1,6] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[1,2,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[1,2,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,2,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[1,3,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[1,6,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[2,1,1,1,1,1,1] => [2,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,7,8,6,5,4,3,2] => ? = 1
[2,1,1,1,1,2] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,1,1,2,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,1,2,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,1,2,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,2,1,1,1,1] => [2,2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,5,7,6,4,3,2] => ? = 1
[2,6] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 2
[3,1,1,1,1,1] => [3,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,6,5,7,4,3,2] => ? = 1
[6,1,1] => [6,1,1]
=> [1,1,1,1,0,1,1,0,0,0,0,0,1,0]
=> [4,6,5,3,2,1,7] => ? = 1
[6,2] => [6,2]
=> [1,1,1,1,1,0,0,1,0,0,0,0,1,0]
=> [5,4,6,3,2,1,7] => ? = 2
[1,1,1,1,1,1,1,2] => [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,2,1] => [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,1,3] => [3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,6,8,5,4,3,2] => ? = 1
[1,1,1,1,1,2,1,1] => [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
[1,1,1,1,1,2,2] => [2,2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,6,8,7,5,4,3,2] => ? = 1
[1,1,1,1,1,3,1] => [3,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [1,7,6,8,5,4,3,2] => ? = 1
[1,1,1,1,1,4] => [4,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,1,0,0,0]
=> [1,6,5,4,7,3,2] => ? = 1
[1,1,1,1,2,1,1,1] => [2,1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> [1,8,9,7,6,5,4,3,2] => ? = 1
Description
The first ascent of a permutation. For a permutation π, this is the smallest index such that π(i)<π(i+1). For the first descent, see [[St000654]].
The following 34 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St000657The smallest part of an integer composition. St000655The length of the minimal rise of a Dyck path. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000617The number of global maxima of a Dyck path. St000700The protection number of an ordered tree. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001481The minimal height of a peak of a Dyck path. St000654The first descent of a permutation. St001075The minimal size of a block of a set partition. St000685The dominant dimension of the LNakayama algebra associated to a Dyck path. St001316The domatic number of a graph. St001829The common independence number of a graph. St001119The length of a shortest maximal path in a graph. St000908The length of the shortest maximal antichain in a poset. St001322The size of a minimal independent dominating set in a graph. St000487The length of the shortest cycle of a permutation. St000210Minimum over maximum difference of elements in cycles. St000906The length of the shortest maximal chain in a poset. St000260The radius of a connected graph. St000259The diameter of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000699The toughness times the least common multiple of 1,. St000090The variation of a composition. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St000314The number of left-to-right-maxima of a permutation. St000310The minimal degree of a vertex of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000456The monochromatic index of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001820The size of the image of the pop stack sorting operator. St001846The number of elements which do not have a complement in the lattice.