Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001060
Mp00100: Dyck paths touch compositionInteger compositions
Mp00133: Integer compositions delta morphismInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001060: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00315: Integer compositions inverse Foata bijectionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 3% values known / values provided: 3%distinct values known / distinct values provided: 100%
Values
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [3,2,1] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,2] => [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,2,1] => [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,3] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,3] => [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1] => [1,2,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,2,2] => [1,1,1,2,2] => ([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,3,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,3,1] => [3,1,1,1,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,4] => [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,2,1,2] => [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,2,2,1] => [2,2,1,1,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,2,3] => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,2,3] => [1,1,2,3] => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,3,1,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,3,2] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,4,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,4,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,3,1,1] => [1,3,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,3,2] => [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,4,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,4,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,4,1] => [4,1,1,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,5] => [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [3,1,3] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,1,3] => [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.