searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001060
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001060: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
Description
The distinguishing index of a graph.
This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism.
If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Matching statistic: St000454
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 14%●distinct values known / distinct values provided: 100%
Values
([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3
([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2
([(3,5),(4,5)],6)
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(4,6),(5,6)],7)
=> [1,1,5] => ([(4,5),(4,6),(5,6)],7)
=> 2
([(3,6),(4,5),(5,6)],7)
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
([(2,3),(4,6),(5,6)],7)
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
([(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,4] => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,6),(3,5),(4,5),(4,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,2),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 4
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 5
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001330
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 100%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001330: Graphs ⟶ ℤResult quality: 11% ●values known / values provided: 11%●distinct values known / distinct values provided: 100%
Values
([(1,3),(2,3)],4)
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 3 + 1
([(2,4),(3,4)],5)
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3 = 2 + 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 3 + 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 3 + 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 2 + 1
([(3,5),(4,5)],6)
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> 3 = 2 + 1
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 3 + 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 4 + 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 + 1
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 + 1
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(0,6),(1,5),(2,4),(3,4),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> [1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 6 = 5 + 1
Description
The hat guessing number of a graph.
Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of q possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number HG(G) of a graph G is the largest integer q such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of q possible colors.
Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!