Your data matches 4 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001060
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St001060: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> 3
Description
The distinguishing index of a graph. This is the smallest number of colours such that there is a colouring of the edges which is not preserved by any automorphism. If the graph has a connected component which is a single edge, or at least two isolated vertices, this statistic is undefined.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
Mp00157: Graphs connected complementGraphs
St000454: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 100%
Values
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ? = 3 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => ([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(2,5),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 2 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 3 - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => ([(0,5),(1,4),(2,3)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,3,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,3,5,4,6] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,3,6,4] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,6,5] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,4,6,2,5] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,6,4] => ([(1,2),(3,5),(4,5)],6)
=> ([(1,2),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,6] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,5,2,6,4] => ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 2 - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,4,6,5] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [3,1,4,5,2,6] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,4,2,6,5] => ([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(0,1),(2,5),(3,4),(4,5)],6)
=> ? = 2 - 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [3,1,2,5,6,4] => ([(0,5),(1,5),(2,4),(3,4)],6)
=> ([(0,5),(1,5),(2,4),(3,4)],6)
=> ? = 3 - 1
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? = 3 - 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5] => ([(2,5),(3,4)],6)
=> ([(2,5),(3,4)],6)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,2,5,6,3] => ([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ? = 3 - 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [2,3,1,6,7,4,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,5,7,6] => ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> 1 = 2 - 1
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,1,4,3,5,6,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,3,5,4,7,6] => ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [2,1,3,5,4,6,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [2,1,3,4,5,7,6] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,7,6] => ([(1,6),(2,5),(3,4)],7)
=> ([(1,6),(2,5),(3,4)],7)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,6,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,4,6,5,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,3,2,4,5,7,6] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,0,1,0,1,1,0,0,0,1,0,1,0]
=> [3,4,1,2,6,7,5] => ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> ([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,2,4,5,6,7,3] => ([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(2,6),(3,6),(4,6),(5,6)],7)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,2,4,3,5,7,6] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [1,2,3,5,4,7,6] => ([(3,6),(4,5)],7)
=> ([(3,6),(4,5)],7)
=> 1 = 2 - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00232: Dyck paths parallelogram posetPosets
Mp00074: Posets to graphGraphs
St001330: Graphs ⟶ ℤResult quality: 13% values known / values provided: 13%distinct values known / distinct values provided: 100%
Values
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 3
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,6),(0,7),(1,4),(1,5),(2,5),(2,7),(3,4),(3,6),(4,8),(5,8),(6,8),(7,8)],9)
=> ? = 3
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 3
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ? = 3
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7)
=> ? = 3
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ([(0,5),(0,9),(1,4),(1,9),(2,6),(2,8),(3,7),(3,8),(4,6),(4,10),(5,7),(5,10),(6,11),(7,11),(8,11),(9,10),(10,11)],12)
=> ? = 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,8),(1,5),(1,7),(2,4),(2,6),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,9),(7,9)],10)
=> ? = 3
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10)
=> ([(0,8),(1,5),(1,7),(2,4),(2,6),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,9),(7,9)],10)
=> ? = 3
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> ([(0,4),(0,5),(1,8),(2,6),(3,6),(4,7),(5,1),(5,7),(7,8),(8,2),(8,3)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> ([(0,4),(0,5),(1,10),(2,7),(3,8),(4,3),(4,6),(5,1),(5,6),(6,8),(6,10),(8,9),(9,7),(10,2),(10,9)],11)
=> ([(0,1),(0,9),(1,8),(2,5),(2,9),(3,5),(3,6),(4,6),(4,7),(5,10),(6,10),(7,8),(7,10),(8,9),(9,10)],11)
=> ? = 3
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,8),(4,8),(5,1),(5,6),(6,7),(8,2),(8,5)],9)
=> ([(0,1),(0,2),(1,8),(2,8),(3,4),(3,6),(4,7),(5,6),(5,8),(6,7),(7,8)],9)
=> ? = 2
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8)
=> ([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,7),(5,7),(6,7)],8)
=> ? = 2
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> ([(0,4),(0,5),(1,7),(2,9),(3,6),(4,8),(5,2),(5,8),(6,7),(8,3),(8,9),(9,1),(9,6)],10)
=> ([(0,3),(0,9),(1,2),(1,8),(2,6),(3,7),(4,7),(4,8),(5,6),(5,9),(6,8),(7,9),(8,9)],10)
=> ? = 2
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,8),(1,5),(1,7),(2,4),(2,6),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,9),(7,9)],10)
=> ? = 3
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 3
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 2
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 3
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 2
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8)
=> ([(0,6),(1,2),(1,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7)],8)
=> ? = 2
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)
=> ([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7)
=> ? = 3
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)
=> ([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7)
=> ? = 3
[1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8)
=> ([(0,4),(1,2),(1,5),(2,7),(3,5),(3,6),(4,6),(5,7),(6,7)],8)
=> ? = 3
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,8),(1,5),(1,7),(2,4),(2,6),(3,6),(3,7),(4,8),(4,9),(5,8),(5,9),(6,9),(7,9)],10)
=> ? = 3
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8)
=> ([(0,7),(1,6),(2,5),(2,6),(3,4),(3,7),(4,5),(4,6),(5,7)],8)
=> ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Matching statistic: St000422
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00011: Binary trees to graphGraphs
St000422: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 50%
Values
[1,0,1,0,1,0]
=> [2,1,3] => [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ? = 3 + 6
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 6
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 6
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 2 + 6
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 3 + 6
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 6
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 + 6
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 6
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [[.,[.,.]],[[.,.],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 + 6
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 + 6
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 2 + 6
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 6
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 6
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 6
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 6
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 3 + 6
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 2 + 6
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 6
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 3 + 6
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,6,5] => [[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,6,5] => [[.,[.,.]],[.,[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,6,3,5] => [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,6,3,5] => [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,4,6,1,3,5] => [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,3,5,6] => [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,4,1,3,5,6] => [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,5,3,6] => [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,4,1,5,3,6] => [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,4,5,6,3] => [[.,.],[[.,[.,[.,.]]],.]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,4,1,5,6,3] => [[.,[.,.]],[[.,[.,.]],.]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,4,5,1,6,3] => [[.,[.,[.,.]]],[[.,.],.]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,4,5,6,1,3] => [[.,[.,[.,[.,.]]]],[.,.]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [[.,[.,.]],[.,[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,5,6,3,4] => [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,5,1,6,3,4] => [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,5,6,1,3,4] => [[.,[.,[.,.]]],[.,[.,.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,5,3,4,6] => [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,5,1,3,4,6] => [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,3,5,4,6] => [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,3,5,6,4] => [[.,.],[.,[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,6,3,4,5] => [[.,.],[[.,.],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,6,1,3,4,5] => [[.,[.,.]],[.,[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,3,6,4,5] => [[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 2 + 6
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,3,4,6,5] => [[.,.],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [2,1,3,4,5,6] => [[.,.],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 2 + 6
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [3,1,4,2,6,5] => [[.,.],[[.,.],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 3 + 6
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [3,4,1,2,6,5] => [[.,[.,.]],[.,[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> ? = 3 + 6
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5] => [[.,.],[[.,[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ? = 2 + 6
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [3,4,1,6,2,5] => [[.,[.,.]],[[.,.],[.,.]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? = 3 + 6
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,4,6,3,7,5] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,3,7,6] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,4,5,3,6,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,5,6,3,7,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [2,1,5,7,3,4,6] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [2,1,6,7,3,4,5] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,1,4,6,2,5,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [3,1,4,6,2,7,5] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,7,2,5,6] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [3,1,4,5,2,7,6] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,5,2,6,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [3,1,5,6,2,4,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [3,1,5,6,2,7,4] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [3,1,5,7,2,4,6] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [3,1,6,7,2,4,5] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [4,1,5,6,2,3,7] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [4,1,5,6,2,7,3] => [[.,.],[[.,[.,.]],[[.,.],.]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [4,1,5,7,2,3,6] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [4,1,6,7,2,3,5] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]
=> [5,1,6,7,2,3,4] => [[.,.],[[.,[.,.]],[.,[.,.]]]]
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 8 = 2 + 6
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.