searching the database
Your data matches 8 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001061
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
St001061: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001061: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => 0
[1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => 0
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => 0
Description
The number of indices that are both descents and recoils of a permutation.
Matching statistic: St000502
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St000502: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => {{1,2}}
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => {{1,3},{2}}
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => {{1,3},{2}}
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => {{1,4},{2},{3}}
=> 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => {{1,4},{2},{3}}
=> 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => {{1},{2,4},{3}}
=> 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => {{1,4},{2},{3}}
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => {{1,4},{2},{3},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => {{1,4},{2},{3},{5}}
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => {{1,5},{2},{3},{4}}
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => {{1,4},{2},{3},{5}}
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 0
Description
The number of successions of a set partitions.
This is the number of indices i such that i and i+1 belonging to the same block.
Matching statistic: St001693
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St001693: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00239: Permutations —Corteel⟶ Permutations
Mp00240: Permutations —weak exceedance partition⟶ Set partitions
St001693: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => {{1,2}}
=> 1
[1,1,0,0]
=> [1,2] => [1,2] => {{1},{2}}
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => {{1,3},{2}}
=> 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => {{1,2},{3}}
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => {{1},{2,3}}
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => {{1,3},{2}}
=> 0
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => {{1},{2},{3}}
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => {{1,4},{2},{3}}
=> 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => {{1,3},{2},{4}}
=> 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => {{1,2},{3,4}}
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => {{1,4},{2},{3}}
=> 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => {{1,2},{3},{4}}
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => {{1},{2,4},{3}}
=> 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => {{1},{2,3},{4}}
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => {{1,4},{2},{3}}
=> 0
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => {{1,4},{2,3}}
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => {{1,3},{2},{4}}
=> 0
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => {{1},{2},{3,4}}
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => {{1},{2,4},{3}}
=> 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => {{1,4},{2},{3}}
=> 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => {{1},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => {{1,4},{2},{3},{5}}
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => {{1,3},{2},{4},{5}}
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => {{1,2},{3,4},{5}}
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => {{1,5},{2},{3,4}}
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => {{1,4},{2},{3},{5}}
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => {{1,2},{3},{4,5}}
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => {{1,2},{3,5},{4}}
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => {{1,5},{2},{3},{4}}
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => {{1,2},{3},{4},{5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => {{1},{2,5},{3},{4}}
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => {{1},{2,4},{3},{5}}
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => {{1},{2,3},{4,5}}
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => {{1},{2,5},{3},{4}}
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => {{1},{2,3},{4},{5}}
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => {{1,5},{2},{3},{4}}
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => {{1,4},{2},{3},{5}}
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,3,2,1,5] => {{1,4},{2,3},{5}}
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => {{1,3},{2},{4,5}}
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => {{1,5},{2},{3},{4}}
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,3,2,1,4] => {{1,5},{2,3},{4}}
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => {{1,3},{2},{4},{5}}
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => {{1},{2},{3,5},{4}}
=> 0
Description
The excess length of a longest path consisting of elements and blocks of a set partition.
Let p be a set partition of {1,…,n}. Let G be the graph with edges (i,i+1) for i∈{1,…,n−1} and (i,b), whenever i is an element of a non-singleton block b∈p.
Then this statistic records the length of the longest path from 1 to n in G, reduced by n. Conjecturally, a longest path has more than n vertices provided that the set partition has no singletons.
Matching statistic: St001465
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001465: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001465: Permutations ⟶ ℤResult quality: 97% ●values known / values provided: 97%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,5,4,3,6,7,2] => ? = 1
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => ? = 1
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [1,6,4,5,3,7,2] => ? = 0
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 0
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => ? = 2
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,4,3,7,6,2] => ? = 1
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 1
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> [1,6,4,3,5,7,2] => ? = 1
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 1
Description
The number of adjacent transpositions in the cycle decomposition of a permutation.
Matching statistic: St000237
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00028: Dyck paths —reverse⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00239: Permutations —Corteel⟶ Permutations
St000237: Permutations ⟶ ℤResult quality: 69% ●values known / values provided: 69%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => 0
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,1,3,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,1,3,4,2] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,2,1,4,3] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,3,2,4,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [1,5,2,4,3] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [5,1,2,4,3] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,1,3,2,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,4,3,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,4,3,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,1,3,2,4] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [5,1,4,3,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,6,1,7] => [6,2,3,4,5,1,7] => ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [3,1,4,5,6,2,7] => [6,1,3,4,5,2,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,3,1,5,6,4,7] => [3,2,1,6,5,4,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,5,4,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,4,1,5,6,3,7] => [6,2,1,4,5,3,7] => ? = 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0,1,1,0,0]
=> [3,4,1,5,6,2,7] => [6,3,2,4,5,1,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,4,2,5,6,3,7] => [1,6,2,4,5,3,7] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2,5,6,4,7] => [3,1,2,6,5,4,7] => ? = 0
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [4,1,2,5,6,3,7] => [6,1,2,4,5,3,7] => ? = 0
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,1,0,0]
=> [1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,4,1,6,5,7] => [4,2,3,1,6,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5,7] => [1,4,3,2,6,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [3,1,4,2,6,5,7] => [4,1,3,2,6,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,3,5,1,6,4,7] => [6,2,3,1,5,4,7] => ? = 0
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,5,2,6,4,7] => [1,6,3,2,5,4,7] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,4,5,1,6,3,7] => [6,2,4,3,5,1,7] => ? = 1
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0,1,1,0,0]
=> [1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [2,1,5,3,6,4,7] => [2,1,6,3,5,4,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4,7] => [6,1,3,2,5,4,7] => ? = 0
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [4,1,5,2,6,3,7] => [6,1,4,3,5,2,7] => ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0]
=> [1,2,5,3,6,4,7] => [1,2,6,3,5,4,7] => ? = 0
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [2,3,1,4,6,5,7] => [3,2,1,4,6,5,7] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,4,1,3,6,5,7] => [4,2,1,3,6,5,7] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [3,4,1,2,6,5,7] => [4,3,2,1,6,5,7] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,1,0,0]
=> [1,4,2,3,6,5,7] => [1,4,2,3,6,5,7] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [2,5,1,3,6,4,7] => [6,2,1,3,5,4,7] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,1,0,0]
=> [3,5,1,2,6,4,7] => [6,3,2,1,5,4,7] => ? = 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0,1,1,0,0]
=> [4,5,1,2,6,3,7] => [6,4,2,3,5,1,7] => ? = 0
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0]
=> [1,5,2,3,6,4,7] => [1,6,2,3,5,4,7] => ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [3,1,2,4,6,5,7] => [3,1,2,4,6,5,7] => ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [4,1,2,3,6,5,7] => [4,1,2,3,6,5,7] => ? = 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,1,0,0]
=> [5,1,2,3,6,4,7] => [6,1,2,3,5,4,7] => ? = 0
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,5,1,6,7] => [5,2,3,4,1,6,7] => ? = 0
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => ? = 0
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [3,1,4,5,2,6,7] => [5,1,3,4,2,6,7] => ? = 0
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,3,1,5,4,6,7] => [3,2,1,5,4,6,7] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 2
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,3,6,7] => [5,2,1,4,3,6,7] => ? = 0
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [3,4,1,5,2,6,7] => [5,3,2,4,1,6,7] => ? = 1
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,1,0,0,0]
=> [1,4,2,5,3,6,7] => [1,5,2,4,3,6,7] => ? = 0
Description
The number of small exceedances.
This is the number of indices i such that πi=i+1.
Matching statistic: St000214
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
St000214: Permutations ⟶ ℤResult quality: 68% ●values known / values provided: 68%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => 0
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => 0
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,1,2] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,1,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => 0
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,5,1,2,3] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,5,1,2,4] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,3,5,1,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,4,1,2,5] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,4,5,1,2] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,5,2,3] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [2,5,1,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [2,4,1,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [3,2,5,1,4] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => [4,2,3,5,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [3,2,4,1,5] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [2,3,1,5,4] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [2,4,5,1,3] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => [3,2,4,5,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [2,3,1,4,5] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,2,3,4,5,7] => ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,2,3,4,6,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,3,4,2,6,7,5] => [1,4,2,3,7,5,6] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,3,4,2,6,5,7] => [1,4,2,3,6,5,7] => ? = 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,3,4,7,6,5,2] => [1,6,5,7,2,3,4] => ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,5,6,2,3,4,7] => ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5,7,6] => [1,4,2,3,5,7,6] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,3,4,2,7,6,5] => [1,4,2,3,6,7,5] => ? = 0
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,3,4,2,5,6,7] => [1,4,2,3,5,6,7] => ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,3,2,5,6,7,4] => [1,3,2,7,4,5,6] => ? = 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,2,5,6,4,7] => [1,3,2,6,4,5,7] => ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4,7,6] => [1,3,2,5,4,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,3,2,5,7,6,4] => [1,3,2,6,7,4,5] => ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,3,2,5,4,6,7] => [1,3,2,5,4,6,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [1,4,6,2,3,5,7] => ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,3,6,5,4,7,2] => [1,5,4,7,2,3,6] => ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,3,7,5,6,4,2] => [1,6,4,5,7,2,3] => ? = 0
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,5,4,6,2,3,7] => ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,4,2,7,6] => [1,4,5,2,3,7,6] => ? = 1
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,3,7,5,4,6,2] => [1,5,4,6,7,2,3] => ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [1,4,5,2,3,6,7] => ? = 0
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,2,4,6,7,5] => [1,3,2,4,7,5,6] => ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,3,2,6,5,7,4] => [1,3,2,5,7,4,6] => ? = 1
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,7,6,5,4] => [1,3,2,6,5,7,4] => ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,2,6,5,4,7] => [1,3,2,5,6,4,7] => ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,3,6,4,5,7,2] => [1,4,5,7,2,3,6] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,3,7,4,6,5,2] => [1,4,6,5,7,2,3] => ? = 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,3,7,6,5,4,2] => [1,5,6,4,7,2,3] => ? = 0
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,6,4,5,2,7] => [1,4,5,6,2,3,7] => ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,2,4,5,7,6] => [1,3,2,4,5,7,6] => ? = 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,2,4,7,6,5] => [1,3,2,4,6,7,5] => ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,3,2,7,5,6,4] => [1,3,2,5,6,7,4] => ? = 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,3,7,4,5,6,2] => [1,4,5,6,7,2,3] => ? = 0
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,2,4,5,6,7,3] => [1,2,7,3,4,5,6] => ? = 0
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,2,4,5,6,3,7] => [1,2,6,3,4,5,7] => ? = 0
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,4,5,3,7,6] => [1,2,5,3,4,7,6] => ? = 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,4,5,7,6,3] => [1,2,6,7,3,4,5] => ? = 0
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,2,4,5,3,6,7] => [1,2,5,3,4,6,7] => ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,4,3,6,7,5] => [1,2,4,3,7,5,6] => ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,4,3,6,5,7] => [1,2,4,3,6,5,7] => ? = 2
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,2,4,6,5,7,3] => [1,2,5,7,3,4,6] => ? = 0
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,4,7,6,5,3] => [1,2,6,5,7,3,4] => ? = 1
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,2,4,6,5,3,7] => [1,2,5,6,3,4,7] => ? = 0
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,4,3,5,7,6] => [1,2,4,3,5,7,6] => ? = 2
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,4,3,7,6,5] => [1,2,4,3,6,7,5] => ? = 1
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,2,4,7,5,6,3] => [1,2,5,6,7,3,4] => ? = 0
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ? = 1
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [1,3,6,2,4,5,7] => ? = 0
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [1,3,5,2,4,7,6] => ? = 1
Description
The number of adjacencies of a permutation.
An adjacency of a permutation π is an index i such that π(i)−1=π(i+1). Adjacencies are also known as ''small descents''.
This can be also described as an occurrence of the bivincular pattern ([2,1], {((0,1),(1,0),(1,1),(1,2),(2,1)}), i.e., the middle row and the middle column are shaded, see [3].
Matching statistic: St001230
(load all 10 compositions to match this statistic)
(load all 10 compositions to match this statistic)
St001230: Dyck paths ⟶ ℤResult quality: 64% ●values known / values provided: 64%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 0
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 0
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> ? = 0
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> ? = 1
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 1
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 0
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> ? = 1
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 2
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> ? = 0
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> ? = 0
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> ? = 0
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> ? = 1
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> ? = 1
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 2
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> ? = 1
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]
=> ? = 2
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> ? = 1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> ? = 1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> ? = 0
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]
=> ? = 1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 0
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 0
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]
=> ? = 1
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]
=> ? = 0
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 0
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 1
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> ? = 2
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]
=> ? = 0
Description
The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property.
Matching statistic: St000648
(load all 7 compositions to match this statistic)
(load all 7 compositions to match this statistic)
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000648: Permutations ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 100%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000648: Permutations ⟶ ℤResult quality: 38% ●values known / values provided: 38%●distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 0
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [5,3,4,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 0
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [5,3,2,4,1] => 0
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [5,2,4,3,1] => 0
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [5,2,3,4,1] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [6,3,4,5,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [5,3,4,2,1,6] => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,3,2,6,5,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,3,4,2,5,1] => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [4,3,2,1,5,6] => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,6,5,4,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> [3,2,5,4,1,6] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [6,3,2,5,4,1] => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [6,3,5,4,2,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [5,3,2,4,1,6] => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,2,1,6,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,6,4,5,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,3,2,4,5,1] => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [3,2,1,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,6,4,5,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,5,4,3,2,6] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,3,6,5,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,6,4,3,5,2] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,3,2,5,6] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [6,2,4,5,3,1] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [5,2,4,3,1,6] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [6,4,3,5,2,1] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,4,3,2,1,6] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [4,2,3,6,5,1] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,2,4,3,5,1] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [6,4,3,2,5,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> [4,2,3,1,5,6] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,5,4,3] => 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [7,3,4,5,6,2,1] => ? = 0
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,1,0,0,0]
=> [5,3,4,2,7,6,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [7,3,4,5,2,6,1] => ? = 0
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> [5,3,4,2,1,6,7] => ? = 0
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0]
=> [4,3,2,7,6,5,1] => ? = 0
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0,1,0]
=> [4,3,2,6,5,1,7] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [7,3,4,2,6,5,1] => ? = 0
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [7,3,4,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,1,1,0,0,0]
=> [4,3,2,1,7,6,5] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [4,3,2,7,5,6,1] => ? = 0
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [7,3,4,2,5,6,1] => ? = 0
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [3,2,7,5,6,4,1] => ? = 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0]
=> [3,2,6,5,4,1,7] => ? = 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,7,6,1] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,0,0]
=> [3,2,7,5,4,6,1] => ? = 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0,1,0]
=> [3,2,5,4,1,6,7] => ? = 2
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [7,3,2,5,6,4,1] => ? = 0
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [7,3,5,4,6,2,1] => ? = 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [7,3,6,5,4,2,1] => ? = 0
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,1,1,0,0,0]
=> [5,3,2,4,7,6,1] => ? = 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [7,3,2,5,4,6,1] => ? = 0
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [7,3,5,4,2,6,1] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> [5,3,2,4,1,6,7] => ? = 0
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,1,1,0,0,0,0]
=> [3,2,1,7,6,5,4] => ? = 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,0,1,0]
=> [3,2,1,6,5,4,7] => ? = 2
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,7,4,6,5,1] => ? = 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,2,7,6,5,4,1] => ? = 2
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0,1,0]
=> [3,2,6,4,5,1,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [7,3,2,4,6,5,1] => ? = 0
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [7,3,2,6,5,4,1] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [7,3,6,4,5,2,1] => ? = 0
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> [6,3,2,4,5,1,7] => ? = 0
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,1,1,0,0,0]
=> [3,2,1,4,7,6,5] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0]
=> [3,2,1,7,5,6,4] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [3,2,7,4,5,6,1] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,1,0,0,0,0,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [7,3,2,4,5,6,1] => ? = 0
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => ? = 0
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,5,4,3,7,6,2] => ? = 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => ? = 0
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => ? = 0
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,7,4,3,5,6,2] => ? = 0
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [7,2,4,5,6,3,1] => ? = 0
[1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [5,2,4,3,7,6,1] => ? = 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [7,2,4,5,3,6,1] => ? = 0
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [5,2,4,3,1,6,7] => ? = 0
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [7,4,3,5,6,2,1] => ? = 1
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [7,5,4,3,6,2,1] => ? = 0
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [7,6,4,5,3,2,1] => ? = 0
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,1,1,0,0,0]
=> [5,4,3,2,7,6,1] => ? = 2
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [7,4,3,5,2,6,1] => ? = 1
Description
The number of 2-excedences of a permutation.
This is the number of positions 1≤i≤n such that σ(i)=i+2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!