searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001106
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],2)
=> 2
([(0,1)],2)
=> 1
([],3)
=> 6
([(1,2)],3)
=> 2
([(0,1),(0,2)],3)
=> 2
([(0,2),(2,1)],3)
=> 1
([(0,2),(1,2)],3)
=> 2
([],4)
=> 24
([(2,3)],4)
=> 6
([(1,2),(1,3)],4)
=> 4
([(0,1),(0,2),(0,3)],4)
=> 6
([(0,2),(0,3),(3,1)],4)
=> 2
([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
([(1,2),(2,3)],4)
=> 2
([(0,3),(3,1),(3,2)],4)
=> 2
([(1,3),(2,3)],4)
=> 6
([(0,3),(1,3),(3,2)],4)
=> 2
([(0,3),(1,3),(2,3)],4)
=> 6
([(0,3),(1,2)],4)
=> 2
([(0,3),(1,2),(1,3)],4)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
([(0,3),(2,1),(3,2)],4)
=> 1
([(0,3),(1,2),(2,3)],4)
=> 2
([],5)
=> 120
([(3,4)],5)
=> 24
([(2,3),(2,4)],5)
=> 12
([(1,2),(1,3),(1,4)],5)
=> 12
([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
([(0,2),(0,3),(0,4),(4,1)],5)
=> 6
([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> 6
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> 6
([(1,3),(1,4),(4,2)],5)
=> 4
([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
([(1,2),(1,3),(2,4),(3,4)],5)
=> 4
([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2
([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 3
([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(2,3),(3,4)],5)
=> 6
([(1,4),(4,2),(4,3)],5)
=> 4
([(0,4),(4,1),(4,2),(4,3)],5)
=> 6
([(2,4),(3,4)],5)
=> 24
([(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(4,2),(4,3)],5)
=> 4
([(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
([(0,4),(1,4),(2,3)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 8
([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 10
Description
The number of supergreedy linear extensions of a poset.
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
* Step 1. Choose a minimal element $x_1$.
* Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$.
This statistic records the number of supergreedy linear extensions.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!