searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000415
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
St000415: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00018: Binary trees —left border symmetry⟶ Binary trees
Mp00015: Binary trees —to ordered tree: right child = right brother⟶ Ordered trees
St000415: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [.,[.,.]]
=> [[],[]]
=> 2
[[[]]]
=> [[.,.],.]
=> [[.,.],.]
=> [[[]]]
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [.,[.,[.,.]]]
=> [[],[],[]]
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [.,[[.,.],.]]
=> [[],[[]]]
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [[.,.],[.,.]]
=> [[[]],[]]
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [[.,[.,.]],.]
=> [[[],[]]]
=> 2
[[[[]]]]
=> [[[.,.],.],.]
=> [[[.,.],.],.]
=> [[[[]]]]
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [.,[.,[.,[.,.]]]]
=> [[],[],[],[]]
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [.,[.,[[.,.],.]]]
=> [[],[],[[]]]
=> 6
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [.,[[.,.],[.,.]]]
=> [[],[[]],[]]
=> 6
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [.,[[.,[.,.]],.]]
=> [[],[[],[]]]
=> 4
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [.,[[[.,.],.],.]]
=> [[],[[[]]]]
=> 2
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [[.,.],[.,[.,.]]]
=> [[[]],[],[]]
=> 6
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [[.,.],[[.,.],.]]
=> [[[]],[[]]]
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[.,[.,.]],[.,.]]
=> [[[],[]],[]]
=> 4
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [[[.,.],.],[.,.]]
=> [[[[]]],[]]
=> 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [[.,[.,[.,.]]],.]
=> [[[],[],[]]]
=> 6
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [[.,[[.,.],.]],.]
=> [[[],[[]]]]
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [[[.,[.,.]],.],.]
=> [[[[],[]]]]
=> 2
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [[[.,.],[.,.]],.]
=> [[[[]],[]]]
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[.,.],.],.],.]
=> [[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[],[],[],[]]
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[],[],[[]]]
=> 24
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[],[[]],[]]
=> 24
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[],[[],[]]]
=> 12
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[],[[[]]]]
=> 6
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[]],[],[]]
=> 24
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[]],[[]]]
=> 6
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[],[]],[]]
=> 12
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[]]],[]]
=> 6
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[],[],[]]]
=> 12
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[],[[]]]]
=> 4
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[],[]]]]
=> 4
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[]],[]]]
=> 4
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[]],[],[],[]]
=> 24
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[.,.],[.,[[.,.],.]]]
=> [[[]],[],[[]]]
=> 6
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[.,.],[[.,.],[.,.]]]
=> [[[]],[[]],[]]
=> 6
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[],[]]]]
=> 4
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [[.,.],[[[.,.],.],.]]
=> [[[]],[[[]]]]
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[],[]],[]]
=> 12
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[.,.],.],[.,[.,.]]]
=> [[[[]]],[],[]]
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[]]],[]]
=> 4
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[.,.],.],[[.,.],.]]
=> [[[[]]],[[]]]
=> 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[]],[],[]]
=> 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[]],[[]]]
=> 4
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[]]],[]]
=> 4
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[.,.],[.,.]],[.,.]]
=> [[[[]],[]],[]]
=> 4
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[.,.],.],.],[.,.]]
=> [[[[[]]]],[]]
=> 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[],[],[]]]
=> 24
Description
The size of the automorphism group of the rooted tree underlying the ordered tree.
Matching statistic: St001106
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001106: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001106: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => ([],2)
=> 2
[[[]]]
=> [[.,.],.]
=> [1,2] => ([(0,1)],2)
=> 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => ([],3)
=> 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => ([(1,2)],3)
=> 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [1,3,2] => ([(0,1),(0,2)],3)
=> 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => ([],4)
=> 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => ([(2,3)],4)
=> 6
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> 6
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => ([(1,2),(1,3)],4)
=> 4
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> 2
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> 6
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> 6
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> 2
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => ([],5)
=> 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => ([(3,4)],5)
=> 24
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> 24
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => ([(2,3),(2,4)],5)
=> 12
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> 6
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> 24
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> 6
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 12
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> 6
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> 12
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> 4
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> 4
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> 4
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> 2
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 24
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 6
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> 6
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> 4
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> 12
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> 4
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> 4
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> 4
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> 4
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> 24
Description
The number of supergreedy linear extensions of a poset.
A linear extension of a poset P with elements $\{x_1,\dots,x_n\}$ is supergreedy, if it can be obtained by the following algorithm:
* Step 1. Choose a minimal element $x_1$.
* Step 2. Suppose $X=\{x_1,\dots,x_i\}$ have been chosen, let $M$ be the set of minimal elements of $P\setminus X$. If there is an element of $M$ which covers an element $x_j$ in $X$, then let $x_{i+1}$ be one of these such that $j$ is maximal; otherwise, choose $x_{i+1}$ to be any element of $M$.
This statistic records the number of supergreedy linear extensions.
Matching statistic: St001346
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 79%
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00064: Permutations —reverse⟶ Permutations
St001346: Permutations ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 79%
Values
[[],[]]
=> [.,[.,.]]
=> [2,1] => [1,2] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [2,1] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 6
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [1,3,2] => 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => [3,1,2] => 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [1,3,2] => [2,3,1] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [3,2,1] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 24
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,4,3] => 6
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,4,2,3] => 6
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [1,3,4,2] => 4
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,4,3,2] => 2
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [4,1,2,3] => 6
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [4,1,3,2] => 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [3,4,1,2] => 4
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [4,3,1,2] => 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,3,4,1] => 6
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [2,4,3,1] => 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,4,2,1] => 2
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [4,2,3,1] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [4,3,2,1] => 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 120
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,5,4] => 24
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,5,3,4] => 24
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [1,2,4,5,3] => 12
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,5,4,3] => 6
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,5,2,3,4] => 24
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,5,2,4,3] => 6
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [1,4,5,2,3] => 12
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,5,4,2,3] => 6
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [1,3,4,5,2] => 12
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [1,3,5,4,2] => 4
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [1,4,5,3,2] => 4
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [1,5,3,4,2] => 4
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,5,4,3,2] => 2
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [5,1,2,3,4] => 24
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [5,1,2,4,3] => 6
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [5,1,4,2,3] => 6
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [2,4,5,3,1] => 4
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [5,1,4,3,2] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [3,4,5,1,2] => 12
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [5,4,1,2,3] => 6
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,5,4,1,2] => 4
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [5,4,1,3,2] => 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [4,5,1,2,3] => 12
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [4,5,1,3,2] => 4
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [4,5,3,1,2] => 4
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [5,3,4,1,2] => 4
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [5,4,3,1,2] => 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,3,4,5,1] => 24
[[],[],[],[],[],[],[]]
=> [.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [7,6,5,4,3,2,1] => [1,2,3,4,5,6,7] => ? = 5040
[[],[],[],[],[],[[]]]
=> [.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> [6,7,5,4,3,2,1] => [1,2,3,4,5,7,6] => ? = 720
[[],[],[],[],[[]],[]]
=> [.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> [6,5,7,4,3,2,1] => [1,2,3,4,7,5,6] => ? = 720
[[],[],[],[],[[],[]]]
=> [.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> [5,7,6,4,3,2,1] => [1,2,3,4,6,7,5] => ? = 240
[[],[],[],[],[[[]]]]
=> [.,[.,[.,[.,[[[.,.],.],.]]]]]
=> [5,6,7,4,3,2,1] => [1,2,3,4,7,6,5] => ? = 120
[[],[],[],[[]],[],[]]
=> [.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> [6,5,4,7,3,2,1] => [1,2,3,7,4,5,6] => ? = 720
[[],[],[],[[],[]],[]]
=> [.,[.,[.,[[.,[.,.]],[.,.]]]]]
=> [5,4,7,6,3,2,1] => [1,2,3,6,7,4,5] => ? = 240
[[],[],[],[[[]]],[]]
=> [.,[.,[.,[[[.,[.,.]],.],.]]]]
=> [5,4,6,7,3,2,1] => [1,2,3,7,6,4,5] => ? = 120
[[],[],[],[[],[],[]]]
=> [.,[.,[.,[[.,.],[.,[.,.]]]]]]
=> [4,7,6,5,3,2,1] => [1,2,3,5,6,7,4] => ? = 144
[[],[],[],[[],[[]]]]
=> [.,[.,[.,[[.,.],[[.,.],.]]]]]
=> [4,6,7,5,3,2,1] => [1,2,3,5,7,6,4] => ? = 48
[[],[],[],[[[]],[]]]
=> [.,[.,[.,[[[.,.],.],[.,.]]]]]
=> [4,5,7,6,3,2,1] => [1,2,3,6,7,5,4] => ? = 48
[[],[],[],[[[],[]]]]
=> [.,[.,[.,[[[.,.],[.,.]],.]]]]
=> [4,6,5,7,3,2,1] => [1,2,3,7,5,6,4] => ? = 48
[[],[],[],[[[[]]]]]
=> [.,[.,[.,[[[[.,.],.],.],.]]]]
=> [4,5,6,7,3,2,1] => [1,2,3,7,6,5,4] => ? = 24
[[],[],[[]],[],[],[]]
=> [.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> [6,5,4,3,7,2,1] => [1,2,7,3,4,5,6] => ? = 720
[[],[],[[]],[],[[]]]
=> [.,[.,[[.,[.,[[.,.],.]]],.]]]
=> [5,6,4,3,7,2,1] => [1,2,7,3,4,6,5] => ? = 120
[[],[],[[]],[[]],[]]
=> [.,[.,[[.,[[.,[.,.]],.]],.]]]
=> [5,4,6,3,7,2,1] => [1,2,7,3,6,4,5] => ? = 120
[[],[],[[]],[[],[]]]
=> [.,[.,[[.,.],[[.,.],[.,.]]]]]
=> [3,5,7,6,4,2,1] => [1,2,4,6,7,5,3] => ? = 24
[[],[],[[[]]],[],[]]
=> [.,[.,[[[.,[.,[.,.]]],.],.]]]
=> [5,4,3,6,7,2,1] => [1,2,7,6,3,4,5] => ? = 120
[[],[],[[],[]],[[]]]
=> [.,[.,[[.,[.,.]],[[.,.],.]]]]
=> [4,3,6,7,5,2,1] => [1,2,5,7,6,3,4] => ? = 48
[[],[],[[],[],[]],[]]
=> [.,[.,[[.,[.,[.,.]]],[.,.]]]]
=> [5,4,3,7,6,2,1] => [1,2,6,7,3,4,5] => ? = 240
[[],[],[[[]],[]],[]]
=> [.,[.,[[[.,[.,.]],.],[.,.]]]]
=> [4,3,5,7,6,2,1] => [1,2,6,7,5,3,4] => ? = 48
[[],[],[[[],[]]],[]]
=> [.,[.,[[[.,[.,.]],[.,.]],.]]]
=> [4,3,6,5,7,2,1] => [1,2,7,5,6,3,4] => ? = 48
[[],[],[[[[]]]],[]]
=> [.,[.,[[[[.,[.,.]],.],.],.]]]
=> [4,3,5,6,7,2,1] => [1,2,7,6,5,3,4] => ? = 24
[[],[],[[],[],[],[]]]
=> [.,[.,[[.,.],[.,[.,[.,.]]]]]]
=> [3,7,6,5,4,2,1] => [1,2,4,5,6,7,3] => ? = 144
[[],[],[[],[],[[]]]]
=> [.,[.,[[.,.],[.,[[.,.],.]]]]]
=> [3,6,7,5,4,2,1] => [1,2,4,5,7,6,3] => ? = 36
[[],[],[[],[[]],[]]]
=> [.,[.,[[.,.],[[.,[.,.]],.]]]]
=> [3,6,5,7,4,2,1] => [1,2,4,7,5,6,3] => ? = 36
[[],[],[[[]],[],[]]]
=> [.,[.,[[[.,.],.],[.,[.,.]]]]]
=> [3,4,7,6,5,2,1] => [1,2,5,6,7,4,3] => ? = 36
[[],[],[[[],[]],[]]]
=> [.,[.,[[[.,.],[.,.]],[.,.]]]]
=> [3,5,4,7,6,2,1] => [1,2,6,7,4,5,3] => ? = 24
[[],[],[[[[]]],[]]]
=> [.,[.,[[[[.,.],.],.],[.,.]]]]
=> [3,4,5,7,6,2,1] => [1,2,6,7,5,4,3] => ? = 12
[[],[],[[[],[],[]]]]
=> [.,[.,[[[.,.],[.,[.,.]]],.]]]
=> [3,6,5,4,7,2,1] => [1,2,7,4,5,6,3] => ? = 36
[[],[],[[[],[[]]]]]
=> [.,[.,[[[.,.],[[.,.],.]],.]]]
=> [3,5,6,4,7,2,1] => [1,2,7,4,6,5,3] => ? = 12
[[],[],[[[[],[]]]]]
=> [.,[.,[[[[.,.],[.,.]],.],.]]]
=> [3,5,4,6,7,2,1] => [1,2,7,6,4,5,3] => ? = 12
[[],[[]],[],[],[],[]]
=> [.,[[.,[.,[.,[.,[.,.]]]]],.]]
=> [6,5,4,3,2,7,1] => [1,7,2,3,4,5,6] => ? = 720
[[],[[]],[],[],[[]]]
=> [.,[[.,[.,[.,[[.,.],.]]]],.]]
=> [5,6,4,3,2,7,1] => [1,7,2,3,4,6,5] => ? = 120
[[],[[]],[],[[]],[]]
=> [.,[[.,[.,[[.,[.,.]],.]]],.]]
=> [5,4,6,3,2,7,1] => [1,7,2,3,6,4,5] => ? = 120
[[],[[]],[],[[],[]]]
=> [.,[[.,.],[.,[[.,.],[.,.]]]]]
=> [2,5,7,6,4,3,1] => [1,3,4,6,7,5,2] => ? = 24
[[],[[]],[],[[[]]]]
=> [.,[[.,[.,[[[.,.],.],.]]],.]]
=> [4,5,6,3,2,7,1] => [1,7,2,3,6,5,4] => ? = 24
[[],[[]],[[]],[],[]]
=> [.,[[.,[[.,[.,[.,.]]],.]],.]]
=> [5,4,3,6,2,7,1] => [1,7,2,6,3,4,5] => ? = 120
[[],[[]],[[],[]],[]]
=> [.,[[.,.],[[.,[.,.]],[.,.]]]]
=> [2,5,4,7,6,3,1] => [1,3,6,7,4,5,2] => ? = 24
[[],[[]],[[[]]],[]]
=> [.,[[.,[[[.,[.,.]],.],.]],.]]
=> [4,3,5,6,2,7,1] => [1,7,2,6,5,3,4] => ? = 24
[[],[[]],[[],[],[]]]
=> [.,[[.,.],[[.,.],[.,[.,.]]]]]
=> [2,4,7,6,5,3,1] => [1,3,5,6,7,4,2] => ? = 24
[[],[[]],[[[[]]]]]
=> [.,[[.,[[[[.,.],.],.],.]],.]]
=> [3,4,5,6,2,7,1] => [1,7,2,6,5,4,3] => ? = 6
[[],[[[]]],[],[],[]]
=> [.,[[[.,[.,[.,[.,.]]]],.],.]]
=> [5,4,3,2,6,7,1] => [1,7,6,2,3,4,5] => ? = 120
[[],[[[]]],[],[[]]]
=> [.,[[[.,[.,[[.,.],.]]],.],.]]
=> [4,5,3,2,6,7,1] => [1,7,6,2,3,5,4] => ? = 24
[[],[[[]]],[[]],[]]
=> [.,[[[.,[[.,[.,.]],.]],.],.]]
=> [4,3,5,2,6,7,1] => [1,7,6,2,5,3,4] => ? = 24
[[],[[],[]],[[],[]]]
=> [.,[[.,[.,.]],[[.,.],[.,.]]]]
=> [3,2,5,7,6,4,1] => [1,4,6,7,5,2,3] => ? = 24
[[],[[],[]],[[[]]]]
=> [.,[[.,[.,.]],[[[.,.],.],.]]]
=> [3,2,5,6,7,4,1] => [1,4,7,6,5,2,3] => ? = 12
[[],[[[]],[]],[],[]]
=> [.,[[[.,[.,.]],.],[.,[.,.]]]]
=> [3,2,4,7,6,5,1] => [1,5,6,7,4,2,3] => ? = 36
[[],[[[[]]]],[],[]]
=> [.,[[[[.,[.,[.,.]]],.],.],.]]
=> [4,3,2,5,6,7,1] => [1,7,6,5,2,3,4] => ? = 24
[[],[[],[],[]],[[]]]
=> [.,[[.,[.,[.,.]]],[[.,.],.]]]
=> [4,3,2,6,7,5,1] => [1,5,7,6,2,3,4] => ? = 48
Description
The number of parking functions that give the same permutation.
A '''parking function''' $(a_1,\dots,a_n)$ is a list of preferred parking spots of $n$ cars entering a one-way street. Once the cars have parked, the order of the cars gives a permutation of $\{1,\dots,n\}$. This statistic records the number of parking functions that yield the same permutation of cars.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!