Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001109
St001109: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 2
([],3)
=> 1
([(1,2)],3)
=> 4
([(0,2),(1,2)],3)
=> 2
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 1
([(2,3)],4)
=> 8
([(1,3),(2,3)],4)
=> 4
([(0,3),(1,3),(2,3)],4)
=> 2
([(0,3),(1,2)],4)
=> 4
([(0,3),(1,2),(2,3)],4)
=> 2
([(1,2),(1,3),(2,3)],4)
=> 18
([(0,3),(1,2),(1,3),(2,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([],5)
=> 1
([(3,4)],5)
=> 16
([(2,4),(3,4)],5)
=> 8
([(1,4),(2,4),(3,4)],5)
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> 2
([(1,4),(2,3)],5)
=> 8
([(1,4),(2,3),(3,4)],5)
=> 4
([(0,1),(2,4),(3,4)],5)
=> 4
([(2,3),(2,4),(3,4)],5)
=> 54
([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> 36
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 24
([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 18
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 24
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,3),(2,3),(2,4)],5)
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> 36
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 24
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 12
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 30
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 18
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 12
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 96
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 72
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 48
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 12
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 6
Description
The number of proper colourings of a graph with as few colours as possible. By definition, this is the evaluation of the chromatic polynomial at the first nonnegative integer which is not a zero of the polynomial.