Your data matches 29 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00160: Permutations graph of inversionsGraphs
Mp00147: Graphs squareGraphs
St001120: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> ([],1)
=> 0
[1,2] => ([],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2,3] => ([],3)
=> ([],3)
=> 0
[1,3,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,2,3,4] => ([],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3,2,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,1,3,4] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[1,2,3,4,5] => ([],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,3,2,4,5] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
Description
The length of a longest path in a graph.
Matching statistic: St000147
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
St000147: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> 1 = 0 + 1
[1,2] => ([],2)
=> [1,1]
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> [2]
=> 2 = 1 + 1
[1,2,3] => ([],3)
=> [1,1,1]
=> 1 = 0 + 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> 3 = 2 + 1
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> 1 = 0 + 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> 2 = 1 + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> 2 = 1 + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> 3 = 2 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> 4 = 3 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> 4 = 3 + 1
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> 2 = 1 + 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> 2 = 1 + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> 2 = 1 + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> 2 = 1 + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> 3 = 2 + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> 4 = 3 + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> 4 = 3 + 1
Description
The largest part of an integer partition.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00100: Dyck paths touch compositionInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> [1] => 1 = 0 + 1
[1,2] => [1,0,1,0]
=> [1,1] => 1 = 0 + 1
[2,1] => [1,1,0,0]
=> [2] => 2 = 1 + 1
[1,2,3] => [1,0,1,0,1,0]
=> [1,1,1] => 1 = 0 + 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,2] => 2 = 1 + 1
[2,1,3] => [1,1,0,0,1,0]
=> [2,1] => 2 = 1 + 1
[2,3,1] => [1,1,0,1,0,0]
=> [3] => 3 = 2 + 1
[3,1,2] => [1,1,1,0,0,0]
=> [3] => 3 = 2 + 1
[3,2,1] => [1,1,1,0,0,0]
=> [3] => 3 = 2 + 1
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1 = 0 + 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2 = 1 + 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,2,1] => 2 = 1 + 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,3] => 3 = 2 + 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,3] => 3 = 2 + 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,3] => 3 = 2 + 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2 = 1 + 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1] => 3 = 2 + 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [4] => 4 = 3 + 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [4] => 4 = 3 + 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [4] => 4 = 3 + 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => 3 = 2 + 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [4] => 4 = 3 + 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => 3 = 2 + 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [4] => 4 = 3 + 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [4] => 4 = 3 + 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [4] => 4 = 3 + 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 1 = 0 + 1
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 2 = 1 + 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 2 = 1 + 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 3 = 2 + 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 3 = 2 + 1
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 3 = 2 + 1
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 2 = 1 + 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 3 = 2 + 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 4 = 3 + 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 4 = 3 + 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 4 = 3 + 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 3 = 2 + 1
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 4 = 3 + 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 3 = 2 + 1
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 4 = 3 + 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 4 = 3 + 1
Description
The largest part of an integer composition.
Matching statistic: St000010
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000010: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1]
=> 1 = 0 + 1
[1,2] => ([],2)
=> [1,1]
=> [2]
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,1]
=> 2 = 1 + 1
[1,2,3] => ([],3)
=> [1,1,1]
=> [3]
=> 1 = 0 + 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2 = 1 + 1
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [2,1]
=> 2 = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 3 = 2 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 3 = 2 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,1,1]
=> 3 = 2 + 1
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [4]
=> 1 = 0 + 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2 = 1 + 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2 = 1 + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [3,1]
=> 2 = 1 + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [2,2]
=> 2 = 1 + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [2,1,1]
=> 3 = 2 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,1,1,1]
=> 4 = 3 + 1
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [5]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [4,1]
=> 2 = 1 + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [3,2]
=> 2 = 1 + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [3,1,1]
=> 3 = 2 + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [2,1,1,1]
=> 4 = 3 + 1
Description
The length of the partition.
Matching statistic: St000013
Mp00114: Permutations connectivity setBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000013: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => => [1] => [1,0]
=> 1 = 0 + 1
[1,2] => 1 => [1,1] => [1,0,1,0]
=> 1 = 0 + 1
[2,1] => 0 => [2] => [1,1,0,0]
=> 2 = 1 + 1
[1,2,3] => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,3,2] => 10 => [1,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,3] => 01 => [2,1] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[2,3,1] => 00 => [3] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[3,1,2] => 00 => [3] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[3,2,1] => 00 => [3] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,3,4] => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,4,3] => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,2,3] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,4,3,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[2,1,3,4] => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[2,1,4,3] => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[2,3,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,4,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[2,4,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,1,2,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,1,4,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,2,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[3,2,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,4,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[3,4,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,2,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,1,3,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,2,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[4,3,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,2,3,4,5] => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,2,3,5,4] => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,2,4,3,5] => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,5,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,5,3,4] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,2,5,4,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,3,2,4,5] => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,5,4] => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,4,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,3,4,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,3,5,2,4] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,3,5,4,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,2,3,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,2,5,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,3,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,4,3,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,4,5,2,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
Description
The height of a Dyck path. The height of a Dyck path $D$ of semilength $n$ is defined as the maximal height of a peak of $D$. The height of $D$ at position $i$ is the number of up-steps minus the number of down-steps before position $i$.
Matching statistic: St000676
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000676: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [1,0]
=> 1 = 0 + 1
[1,2] => ([],2)
=> [1,1]
=> [1,1,0,0]
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> [2]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,2,3] => ([],3)
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [1,0,1,0,1,0]
=> 3 = 2 + 1
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 3 = 2 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [1,0,1,0,1,0,1,0]
=> 4 = 3 + 1
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4 = 3 + 1
Description
The number of odd rises of a Dyck path. This is the number of ones at an odd position, with the initial position equal to 1. The number of Dyck paths of semilength $n$ with $k$ up steps in odd positions and $k$ returns to the main diagonal are counted by the binomial coefficient $\binom{n-1}{k-1}$ [3,4].
Matching statistic: St000734
Mp00160: Permutations graph of inversionsGraphs
Mp00037: Graphs to partition of connected componentsInteger partitions
Mp00042: Integer partitions initial tableauStandard tableaux
St000734: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => ([],1)
=> [1]
=> [[1]]
=> 1 = 0 + 1
[1,2] => ([],2)
=> [1,1]
=> [[1],[2]]
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> [2]
=> [[1,2]]
=> 2 = 1 + 1
[1,2,3] => ([],3)
=> [1,1,1]
=> [[1],[2],[3]]
=> 1 = 0 + 1
[1,3,2] => ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2 = 1 + 1
[2,1,3] => ([(1,2)],3)
=> [2,1]
=> [[1,2],[3]]
=> 2 = 1 + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 3 = 2 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 3 = 2 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> [3]
=> [[1,2,3]]
=> 3 = 2 + 1
[1,2,3,4] => ([],4)
=> [1,1,1,1]
=> [[1],[2],[3],[4]]
=> 1 = 0 + 1
[1,2,4,3] => ([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
[1,3,2,4] => ([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[2,1,3,4] => ([(2,3)],4)
=> [2,1,1]
=> [[1,2],[3],[4]]
=> 2 = 1 + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> [2,2]
=> [[1,2],[3,4]]
=> 2 = 1 + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> [3,1]
=> [[1,2,3],[4]]
=> 3 = 2 + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [4]
=> [[1,2,3,4]]
=> 4 = 3 + 1
[1,2,3,4,5] => ([],5)
=> [1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> 1 = 0 + 1
[1,2,3,5,4] => ([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
[1,2,4,3,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,3,2,4,5] => ([(3,4)],5)
=> [2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> 2 = 1 + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> [2,2,1]
=> [[1,2],[3,4],[5]]
=> 2 = 1 + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> [3,1,1]
=> [[1,2,3],[4],[5]]
=> 3 = 2 + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> [4,1]
=> [[1,2,3,4],[5]]
=> 4 = 3 + 1
Description
The last entry in the first row of a standard tableau.
Mp00114: Permutations connectivity setBinary words
Mp00105: Binary words complementBinary words
St000392: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => => => ? = 0
[1,2] => 1 => 0 => 0
[2,1] => 0 => 1 => 1
[1,2,3] => 11 => 00 => 0
[1,3,2] => 10 => 01 => 1
[2,1,3] => 01 => 10 => 1
[2,3,1] => 00 => 11 => 2
[3,1,2] => 00 => 11 => 2
[3,2,1] => 00 => 11 => 2
[1,2,3,4] => 111 => 000 => 0
[1,2,4,3] => 110 => 001 => 1
[1,3,2,4] => 101 => 010 => 1
[1,3,4,2] => 100 => 011 => 2
[1,4,2,3] => 100 => 011 => 2
[1,4,3,2] => 100 => 011 => 2
[2,1,3,4] => 011 => 100 => 1
[2,1,4,3] => 010 => 101 => 1
[2,3,1,4] => 001 => 110 => 2
[2,3,4,1] => 000 => 111 => 3
[2,4,1,3] => 000 => 111 => 3
[2,4,3,1] => 000 => 111 => 3
[3,1,2,4] => 001 => 110 => 2
[3,1,4,2] => 000 => 111 => 3
[3,2,1,4] => 001 => 110 => 2
[3,2,4,1] => 000 => 111 => 3
[3,4,1,2] => 000 => 111 => 3
[3,4,2,1] => 000 => 111 => 3
[4,1,2,3] => 000 => 111 => 3
[4,1,3,2] => 000 => 111 => 3
[4,2,1,3] => 000 => 111 => 3
[4,2,3,1] => 000 => 111 => 3
[4,3,1,2] => 000 => 111 => 3
[4,3,2,1] => 000 => 111 => 3
[1,2,3,4,5] => 1111 => 0000 => 0
[1,2,3,5,4] => 1110 => 0001 => 1
[1,2,4,3,5] => 1101 => 0010 => 1
[1,2,4,5,3] => 1100 => 0011 => 2
[1,2,5,3,4] => 1100 => 0011 => 2
[1,2,5,4,3] => 1100 => 0011 => 2
[1,3,2,4,5] => 1011 => 0100 => 1
[1,3,2,5,4] => 1010 => 0101 => 1
[1,3,4,2,5] => 1001 => 0110 => 2
[1,3,4,5,2] => 1000 => 0111 => 3
[1,3,5,2,4] => 1000 => 0111 => 3
[1,3,5,4,2] => 1000 => 0111 => 3
[1,4,2,3,5] => 1001 => 0110 => 2
[1,4,2,5,3] => 1000 => 0111 => 3
[1,4,3,2,5] => 1001 => 0110 => 2
[1,4,3,5,2] => 1000 => 0111 => 3
[1,4,5,2,3] => 1000 => 0111 => 3
[1,4,5,3,2] => 1000 => 0111 => 3
Description
The length of the longest run of ones in a binary word.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
St000503: Set partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => [1,0]
=> {{1}}
=> ? = 0
[1,2] => [1,0,1,0]
=> {{1},{2}}
=> 0
[2,1] => [1,1,0,0]
=> {{1,2}}
=> 1
[1,2,3] => [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> {{1,2},{3}}
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> {{1,3},{2}}
=> 2
[3,1,2] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2
[3,2,1] => [1,1,1,0,0,0]
=> {{1,2,3}}
=> 2
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 1
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 3
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 3
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 3
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 2
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 3
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 1
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 1
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 1
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 1
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 2
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 3
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 3
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 3
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 3
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 3
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 3
Description
The maximal difference between two elements in a common block.
Matching statistic: St000442
Mp00114: Permutations connectivity setBinary words
Mp00178: Binary words to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000442: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => => [1] => [1,0]
=> ? = 0
[1,2] => 1 => [1,1] => [1,0,1,0]
=> 0
[2,1] => 0 => [2] => [1,1,0,0]
=> 1
[1,2,3] => 11 => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,3,2] => 10 => [1,2] => [1,0,1,1,0,0]
=> 1
[2,1,3] => 01 => [2,1] => [1,1,0,0,1,0]
=> 1
[2,3,1] => 00 => [3] => [1,1,1,0,0,0]
=> 2
[3,1,2] => 00 => [3] => [1,1,1,0,0,0]
=> 2
[3,2,1] => 00 => [3] => [1,1,1,0,0,0]
=> 2
[1,2,3,4] => 111 => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,2,4,3] => 110 => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,3,2,4] => 101 => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,3,4,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,2,3] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,2] => 100 => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,4] => 011 => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[2,1,4,3] => 010 => [2,2] => [1,1,0,0,1,1,0,0]
=> 1
[2,3,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[2,3,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[2,4,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[2,4,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[3,1,2,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[3,1,4,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[3,2,1,4] => 001 => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
[3,2,4,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[3,4,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[3,4,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,1,2,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,1,3,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,2,1,3] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,2,3,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,3,1,2] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[4,3,2,1] => 000 => [4] => [1,1,1,1,0,0,0,0]
=> 3
[1,2,3,4,5] => 1111 => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,2,3,5,4] => 1110 => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,2,4,3,5] => 1101 => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,2,4,5,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,3,4] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => 1100 => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => 1011 => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,3,2,5,4] => 1010 => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,3,4,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,3,4,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,3,5,2,4] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,3,5,4,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,2,3,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,2,5,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,3,2,5] => 1001 => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,3,5,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,5,2,3] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,4,5,3,2] => 1000 => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 3
Description
The maximal area to the right of an up step of a Dyck path.
The following 19 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000444The length of the maximal rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001268The size of the largest ordinal summand in the poset. St000662The staircase size of the code of a permutation. St000141The maximum drop size of a permutation. St000171The degree of the graph. St001644The dimension of a graph. St001330The hat guessing number of a graph. St001645The pebbling number of a connected graph. St000209Maximum difference of elements in cycles. St000844The size of the largest block in the direct sum decomposition of a permutation. St000956The maximal displacement of a permutation. St001090The number of pop-stack-sorts needed to sort a permutation. St001291The number of indecomposable summands of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.