searching the database
Your data matches 3 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001122
Mp00054: Parking functions —to inverse des composition⟶ Integer compositions
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001122: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00180: Integer compositions —to ribbon⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001122: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[2,1,1] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[3,1,1] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[2,1,2] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[2,1,3] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[3,1,2] => [2,1] => [[2,2],[1]]
=> [1]
=> 1
[1,2,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,1,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[1,3,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[3,1,1,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[1,1,4,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[4,1,1,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[1,2,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,2,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[2,2,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,2,1,3] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,3,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,1,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,3,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[2,3,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[3,1,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[3,1,2,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[3,2,1,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 0
[1,1,4,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,2,4,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,1,4] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[2,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,4,1,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 0
[4,1,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[4,1,2,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[4,2,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,1,3,3] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[3,1,1,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[3,1,3,1] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[3,3,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,1,3,4] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,4,3,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[3,1,1,4] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[3,1,4,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[3,4,1,1] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[4,1,1,3] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[4,1,3,1] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[4,3,1,1] => [3,1] => [[3,3],[2]]
=> [2]
=> 0
[2,1,2,2] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,2,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[1,3,2,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,1,2,3] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,3,2] => [2,2] => [[3,2],[1]]
=> [1]
=> 1
[2,2,1,3] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
[2,3,1,2] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 1
Description
The multiplicity of the sign representation in the Kronecker square corresponding to a partition.
The Kronecker coefficient is the multiplicity $g_{\mu,\nu}^\lambda$ of the Specht module $S^\lambda$ in $S^\mu\otimes S^\nu$:
$$ S^\mu\otimes S^\nu = \bigoplus_\lambda g_{\mu,\nu}^\lambda S^\lambda $$
This statistic records the Kronecker coefficient $g_{\lambda,\lambda}^{1^n}$, for $\lambda\vdash n$. It equals $1$ if and only if $\lambda$ is self-conjugate.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00054: Parking functions —to inverse des composition⟶ Integer compositions
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 100%
Mp00041: Integer compositions —conjugate⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000454: Graphs ⟶ ℤResult quality: 9% ●values known / values provided: 9%●distinct values known / distinct values provided: 100%
Values
[2,1,1] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[3,1,1] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[2,1,2] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[2,1,3] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[3,1,2] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 1 + 2
[1,2,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,3,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,1,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,4,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[4,1,1,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,2,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1,2] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,2,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,2,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,2,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,3,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1,3] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,3,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,3,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,1,2] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,2,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,2,1,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[1,1,4,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,2,4,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1,4] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,4,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,4,1,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,1,1,2] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,1,2,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[4,2,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,3,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,1,3] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,1,3,1] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,3,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,1,3,4] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,4,3,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,1,4] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[3,1,4,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[3,4,1,1] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[4,1,1,3] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[4,1,3,1] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[4,3,1,1] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,2,2] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,2,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[1,3,2,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,2,3] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[2,1,3,2] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[2,2,1,3] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,3,1,2] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 2
[2,1,1,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,1,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,1,1,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,1,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,1,1,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,1,4,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,4,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[4,1,1,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,5,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,5,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[5,1,1,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,1,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,4,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,1,3,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,3,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,1,5,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,5,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[5,1,1,3,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,1,4,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,5,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,1,4,1,1] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[5,4,1,1,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,1,2,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,1,2,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,2,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,1,1,2] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,1,4,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,1,1,2,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,2,1,1,2] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,5,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,5,1,1,2] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[5,1,1,2,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,1,1,3,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,2,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,1,1,3] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,1,3,4] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,1,1,2,4] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,1,1,4] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[4,1,1,2,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[4,2,1,1,3] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[4,3,1,1,2] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[2,1,5,1,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[2,5,1,1,3] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,1,5,1,2] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[3,2,1,5,1] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[3,5,1,1,2] => [3,1,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 1 + 2
[5,1,1,2,3] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral.
If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St001645
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00054: Parking functions —to inverse des composition⟶ Integer compositions
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Mp00038: Integer compositions —reverse⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001645: Graphs ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[2,1,1] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 5
[3,1,1] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 5
[2,1,2] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 5
[2,1,3] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 5
[3,1,2] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 1 + 5
[1,2,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,1,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,3,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[3,1,1,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,1,4,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[4,1,1,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[1,2,1,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,1,2] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[2,1,2,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[2,2,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,2,1,3] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,3,1,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,1,3] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[2,1,3,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[2,3,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[3,1,1,2] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[3,1,2,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[3,2,1,1] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 5
[1,1,4,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,2,4,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,1,4] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,4,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[2,4,1,1] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 5
[4,1,1,2] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[4,1,2,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[4,2,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,1,3,3] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[3,1,1,3] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[3,1,3,1] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[3,3,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,1,3,4] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,4,3,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[3,1,1,4] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[3,1,4,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[3,4,1,1] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[4,1,1,3] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[4,1,3,1] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[4,3,1,1] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 0 + 5
[2,1,2,2] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[2,2,1,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,3,2,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,1,2,3] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 5
[2,1,3,2] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 1 + 5
[2,2,1,3] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[2,3,1,2] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 5
[1,1,1,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,4,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,6,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,2,1,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,2,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,2,1,3] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,3,1,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,2,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,4,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,2,4,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,4,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,5,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,2,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,5,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,6,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,2,6,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,6,1,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,3,3] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,3,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,3,4] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,4,3,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,3,4,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,5,3] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,3,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,5,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,6,3] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,3,6,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,6,1,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,4,4] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,4,4,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,4,5] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,4,1,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,5,1,4,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,6,4] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,4,1,6,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,6,1,1,4,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,5,5] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,5,1,1,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,1,5,6] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,5,1,1,6,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,6,1,1,5,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,2,2,1,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,2,2,2,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,3,2,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,2,2,1,3] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,2,3,1,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,2,2,3,1,1] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
[1,1,1,4,2,2] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 1 + 5
Description
The pebbling number of a connected graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!