searching the database
Your data matches 32 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001161
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
St001161: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The major index north count of a Dyck path.
The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]].
The '''major index north count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = N\}$.
Matching statistic: St000008
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000008: Integer compositions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [1,1] => 1
[1,1,0,0]
=> [2] => 0
[1,0,1,0,1,0]
=> [1,1,1] => 3
[1,0,1,1,0,0]
=> [1,2] => 1
[1,1,0,0,1,0]
=> [2,1] => 2
[1,1,0,1,0,0]
=> [2,1] => 2
[1,1,1,0,0,0]
=> [3] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 6
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 4
[1,0,1,1,0,1,0,0]
=> [1,2,1] => 4
[1,0,1,1,1,0,0,0]
=> [1,3] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 5
[1,1,0,0,1,1,0,0]
=> [2,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => 5
[1,1,0,1,1,0,0,0]
=> [2,2] => 2
[1,1,1,0,0,0,1,0]
=> [3,1] => 3
[1,1,1,0,0,1,0,0]
=> [3,1] => 3
[1,1,1,0,1,0,0,0]
=> [3,1] => 3
[1,1,1,1,0,0,0,0]
=> [4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 8
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 9
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 5
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 9
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 9
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 6
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 6
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 2
Description
The major index of the composition.
The descents of a composition $[c_1,c_2,\dots,c_k]$ are the partial sums $c_1, c_1+c_2,\dots, c_1+\dots+c_{k-1}$, excluding the sum of all parts. The major index of a composition is the sum of its descents.
For details about the major index see [[Permutations/Descents-Major]].
Matching statistic: St000947
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St000947: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> 2
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 6
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 7
Description
The major index east count of a Dyck path.
The descent set $\operatorname{des}(D)$ of a Dyck path $D = D_1 \cdots D_{2n}$ with $D_i \in \{N,E\}$ is given by all indices $i$ such that $D_i = E$ and $D_{i+1} = N$. This is, the positions of the valleys of $D$.
The '''major index''' of a Dyck path is then the sum of the positions of the valleys, $\sum_{i \in \operatorname{des}(D)} i$, see [[St000027]].
The '''major index east count''' is given by $\sum_{i \in \operatorname{des}(D)} \#\{ j \leq i \mid D_j = E\}$.
Matching statistic: St000391
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Mp00109: Permutations —descent word⟶ Binary words
Mp00104: Binary words —reverse⟶ Binary words
St000391: Binary words ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => => => ? = 0
[1,0,1,0]
=> [2,1] => 1 => 1 => 1
[1,1,0,0]
=> [1,2] => 0 => 0 => 0
[1,0,1,0,1,0]
=> [3,2,1] => 11 => 11 => 3
[1,0,1,1,0,0]
=> [2,3,1] => 01 => 10 => 1
[1,1,0,0,1,0]
=> [3,1,2] => 10 => 01 => 2
[1,1,0,1,0,0]
=> [2,1,3] => 10 => 01 => 2
[1,1,1,0,0,0]
=> [1,2,3] => 00 => 00 => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 111 => 111 => 6
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 011 => 110 => 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 101 => 101 => 4
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 101 => 101 => 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 001 => 100 => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 110 => 011 => 5
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 010 => 010 => 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 110 => 011 => 5
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 110 => 011 => 5
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 010 => 010 => 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 100 => 001 => 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 100 => 001 => 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 100 => 001 => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 000 => 000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 1111 => 1111 => 10
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 0111 => 1110 => 6
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 1011 => 1101 => 7
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 1011 => 1101 => 7
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0011 => 1100 => 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 1101 => 1011 => 8
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 0101 => 1010 => 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 1101 => 1011 => 8
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 1101 => 1011 => 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0101 => 1010 => 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 1001 => 1001 => 5
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 1001 => 1001 => 5
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 1001 => 1001 => 5
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0001 => 1000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 1110 => 0111 => 9
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 0110 => 0110 => 5
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 1010 => 0101 => 6
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 1010 => 0101 => 6
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0010 => 0100 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 1110 => 0111 => 9
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0110 => 0110 => 5
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 1110 => 0111 => 9
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 1110 => 0111 => 9
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0110 => 0110 => 5
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 1010 => 0101 => 6
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 1010 => 0101 => 6
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 1010 => 0101 => 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 0010 => 0100 => 2
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 1100 => 0011 => 7
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,3,2,1] => ? => ? => ? = 11
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,6,3,2,1] => ? => ? => ? = 17
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [7,8,4,5,6,3,2,1] => ? => ? => ? = 12
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,3,4,2,1] => ? => ? => ? = 12
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [8,6,5,7,3,4,2,1] => ? => ? => ? = 20
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [7,5,6,8,3,4,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [8,5,6,4,3,7,2,1] => ? => ? => ? = 19
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [7,8,4,5,3,6,2,1] => ? => ? => ? = 13
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,6,4,5,3,8,2,1] => ? => ? => ? = 20
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,3,7,2,1] => ? => ? => ? = 20
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,3,8,2,1] => ? => ? => ? = 13
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,3,7,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [8,6,5,3,4,7,2,1] => ? => ? => ? = 21
[1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [6,7,5,3,4,8,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [8,5,6,3,4,7,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [7,5,6,3,4,8,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [6,5,7,3,4,8,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [5,6,7,3,4,8,2,1] => ? => ? => ? = 8
[1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [7,8,4,3,5,6,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,7,4,3,5,8,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [5,6,4,3,7,8,2,1] => ? => ? => ? = 14
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [8,4,5,3,6,7,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,4,5,3,6,8,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,7,8,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [5,4,6,3,7,8,2,1] => ? => ? => ? = 15
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [8,6,3,4,5,7,2,1] => ? => ? => ? = 16
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [6,7,3,4,5,8,2,1] => ? => ? => ? = 9
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [5,6,3,4,7,8,2,1] => ? => ? => ? = 9
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,8,2,1] => ? => ? => ? = 16
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,7,8,2,1] => ? => ? => ? = 16
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,8,2,1] => ? => ? => ? = 9
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,4,2,3,1] => ? => ? => ? = 13
[1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,4,2,3,1] => ? => ? => ? = 14
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [6,5,7,8,4,2,3,1] => ? => ? => ? = 15
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [7,8,6,4,5,2,3,1] => ? => ? => ? = 15
[1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,2,3,1] => ? => ? => ? = 9
[1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,6,2,3,1] => ? => ? => ? = 15
[1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [6,7,5,4,8,2,3,1] => ? => ? => ? = 15
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [5,6,7,4,8,2,3,1] => ? => ? => ? = 9
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [7,6,4,5,8,2,3,1] => ? => ? => ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,7,2,3,1] => ? => ? => ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [7,5,4,6,8,2,3,1] => ? => ? => ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,7,8,2,3,1] => ? => ? => ? = 17
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,8,2,3,1] => ? => ? => ? = 10
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [7,4,5,6,8,2,3,1] => ? => ? => ? = 11
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [6,4,5,7,8,2,3,1] => ? => ? => ? = 11
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [5,4,6,7,8,2,3,1] => ? => ? => ? = 11
[1,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,3,2,4,1] => ? => ? => ? = 14
[1,0,1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [7,5,6,8,3,2,4,1] => ? => ? => ? = 15
Description
The sum of the positions of the ones in a binary word.
Matching statistic: St000330
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00120: Dyck paths —Lalanne-Kreweras involution⟶ Dyck paths
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Mp00031: Dyck paths —to 312-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000330: Standard tableaux ⟶ ℤResult quality: 87% ●values known / values provided: 87%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [[1],[2]]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [[1,3],[2]]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [[1,2],[3]]
=> 2
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [[1,3],[2,4]]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [[1,2],[3],[4]]
=> 5
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [[1,2,4],[3]]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [[1,2],[3],[4]]
=> 5
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 5
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [[1,2,3],[4]]
=> 3
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [[1,2,3],[4]]
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [[1,3],[2,4],[5]]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [[1,3],[2,4],[5]]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [[1,3,5],[2],[4]]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [[1,3,4],[2,5]]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [[1,2],[3],[4],[5]]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [[1,2],[3],[4],[5]]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [[1,2],[3],[4],[5]]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [[1,2,5],[3],[4]]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [[1,2,4],[3,5]]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [[1,2,4,5],[3]]
=> 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,1,0,0,0]
=> [3,2,1,5,4,8,7,6] => ?
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0,1,0]
=> [3,2,1,6,5,7,4,8] => ?
=> ? = 13
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,1,0,0]
=> [3,2,1,5,4,6,8,7] => ?
=> ? = 14
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,1,0,0]
=> [3,2,1,5,4,7,8,6] => ?
=> ? = 14
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0]
=> [4,3,2,7,6,5,1,8] => ?
=> ? = 18
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0]
=> [6,5,4,8,7,3,2,1] => ?
=> ? = 25
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,1,0,0,1,0]
=> [4,3,2,5,1,7,6,8] => ?
=> ? = 13
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0]
=> [4,3,2,7,6,8,5,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0]
=> [5,4,3,7,6,8,2,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,1,0,0]
=> [4,3,2,5,1,6,8,7] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> [3,2,1,4,6,5,8,7] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> [3,2,1,4,6,5,7,8] => ?
=> ? = 8
[1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,1,0,0,0,1,0]
=> [3,2,1,6,7,5,4,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,1,0,0,1,1,0,0]
=> [3,2,1,5,6,4,8,7] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,1,0,0,0,0]
=> [4,3,2,6,8,7,5,1] => ?
=> ? = 21
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,1,0,0,1,0]
=> [3,2,1,4,5,7,6,8] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,1,0,1,0,0,1,0]
=> [3,2,1,4,6,7,5,8] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,1,0,1,0,0,1,0]
=> [3,2,1,5,6,7,4,8] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0]
=> [4,3,2,6,7,8,5,1] => ?
=> ? = 16
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [2,1,6,5,4,3,7,8] => ?
=> ? = 13
[1,0,1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [2,1,6,5,4,7,3,8] => ?
=> ? = 14
[1,0,1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [2,1,5,4,3,6,8,7] => ?
=> ? = 15
[1,0,1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,1,0,1,0,0]
=> [2,1,5,4,3,7,8,6] => ?
=> ? = 15
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,1,0,0]
=> [2,1,6,5,4,7,8,3] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,1,4,3,7,6,5,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [2,1,5,4,7,6,3,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [2,1,6,5,7,4,3,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [2,1,5,4,6,3,7,8] => ?
=> ? = 9
[1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,4,3,5,7,6,8] => ?
=> ? = 10
[1,0,1,1,0,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,1,4,3,6,7,5,8] => ?
=> ? = 10
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [2,1,5,4,6,7,3,8] => ?
=> ? = 10
[1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0,1,0,1,0]
=> [3,2,6,5,4,1,7,8] => ?
=> ? = 13
[1,0,1,1,0,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,0]
=> [3,2,7,6,5,8,4,1] => ?
=> ? = 21
[1,0,1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0]
=> [3,2,6,5,4,7,8,1] => ?
=> ? = 15
[1,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0]
=> [5,4,8,7,6,3,2,1] => ?
=> ? = 26
[1,0,1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0]
=> [5,4,7,6,3,2,8,1] => ?
=> ? = 20
[1,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,0,1,0]
=> [4,3,5,2,1,7,6,8] => ?
=> ? = 14
[1,0,1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0,1,0]
=> [4,3,6,5,2,7,1,8] => ?
=> ? = 14
[1,0,1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,1,0,1,0,0]
=> [4,3,5,2,1,7,8,6] => ?
=> ? = 15
[1,0,1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0]
=> [4,3,6,5,2,7,8,1] => ?
=> ? = 15
[1,0,1,1,0,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,0]
=> [3,2,5,4,8,7,6,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0]
=> [3,2,6,5,8,7,4,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,1,0,0,0,0]
=> [3,2,7,6,8,5,4,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0,1,0,1,0]
=> [3,2,5,4,6,1,7,8] => ?
=> ? = 9
[1,0,1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,1,1,0,0,0,0]
=> [4,3,5,2,8,7,6,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0]
=> [4,3,7,6,8,5,2,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,1,0,0,0,0]
=> [5,4,6,3,8,7,2,1] => ?
=> ? = 22
[1,0,1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,1,0,1,0,0,0]
=> [3,2,6,5,7,8,4,1] => ?
=> ? = 17
[1,0,1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,1,0,0,1,0]
=> [3,2,5,4,6,7,1,8] => ?
=> ? = 10
[1,0,1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,1,0,0,0]
=> [4,3,5,2,6,8,7,1] => ?
=> ? = 17
Description
The (standard) major index of a standard tableau.
A descent of a standard tableau $T$ is an index $i$ such that $i+1$ appears in a row strictly below the row of $i$. The (standard) major index is the the sum of the descents.
Matching statistic: St000169
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000169: Standard tableaux ⟶ ℤResult quality: 86% ●values known / values provided: 86%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [[1],[2]]
=> 1
[1,1,0,0]
=> [1,2] => [[1,2]]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [[1],[2],[3]]
=> 3
[1,0,1,1,0,0]
=> [2,3,1] => [[1,2],[3]]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [[1,3],[2]]
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => [[1,3],[2]]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [[1,2,3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [[1],[2],[3],[4]]
=> 6
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [[1,2],[3],[4]]
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [[1,3],[2],[4]]
=> 4
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [[1,3],[2],[4]]
=> 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [[1,2,3],[4]]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [[1,4],[2],[3]]
=> 5
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [[1,2],[3,4]]
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [[1,4],[2],[3]]
=> 5
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [[1,4],[2],[3]]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [[1,2,4],[3]]
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [[1,3,4],[2]]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [[1,3,4],[2]]
=> 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [[1,3,4],[2]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,2,3,4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [[1],[2],[3],[4],[5]]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [[1,2],[3],[4],[5]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [[1,3],[2],[4],[5]]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [[1,3],[2],[4],[5]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [[1,2,3],[4],[5]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [[1,4],[2],[3],[5]]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [[1,2],[3,4],[5]]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [[1,4],[2],[3],[5]]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [[1,3,4],[2],[5]]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [[1,3,4],[2],[5]]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [[1,5],[2],[3],[4]]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [[1,2],[3,5],[4]]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [[1,3],[2,5],[4]]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [[1,3],[2,5],[4]]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [[1,2,3],[4,5]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [[1,5],[2],[3],[4]]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [[1,2],[3,5],[4]]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [[1,5],[2],[3],[4]]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [[1,2,5],[3],[4]]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [[1,3,5],[2],[4]]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [[1,3,5],[2],[4]]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [[1,3,5],[2],[4]]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [[1,2,3,5],[4]]
=> 2
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,3,2,1] => ?
=> ? = 11
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,6,3,2,1] => ?
=> ? = 17
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [7,8,4,5,6,3,2,1] => ?
=> ? = 12
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,7,3,2,1] => ?
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,3,4,2,1] => ?
=> ? = 12
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [8,6,5,7,3,4,2,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [7,5,6,8,3,4,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [8,5,6,4,3,7,2,1] => ?
=> ? = 19
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [7,8,4,5,3,6,2,1] => ?
=> ? = 13
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,6,4,5,3,7,2,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,6,4,5,3,8,2,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,3,7,2,1] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,3,8,2,1] => ?
=> ? = 13
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [8,4,5,6,3,7,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [8,6,5,3,4,7,2,1] => ?
=> ? = 21
[1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [6,7,5,3,4,8,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [8,5,6,3,4,7,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,0,1,1,0,0,1,0,0]
=> [7,5,6,3,4,8,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [6,5,7,3,4,8,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,0,1,1,1,0,0,0,0]
=> [5,6,7,3,4,8,2,1] => ?
=> ? = 8
[1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [7,8,4,3,5,6,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,7,4,3,5,8,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [5,6,4,3,7,8,2,1] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [8,4,5,3,6,7,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,4,5,3,6,8,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,7,8,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [5,4,6,3,7,8,2,1] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,1,0,0,0,0,0]
=> [4,5,6,3,7,8,2,1] => ?
=> ? = 8
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [8,6,3,4,5,7,2,1] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [6,7,3,4,5,8,2,1] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,0,1,1,0,0,0,0]
=> [5,6,3,4,7,8,2,1] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,8,2,1] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,7,8,2,1] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,5,3,6,7,8,2,1] => ?
=> ? = 9
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,4,2,3,1] => ?
=> ? = 13
[1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,4,2,3,1] => ?
=> ? = 14
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [6,5,7,8,4,2,3,1] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [7,8,6,4,5,2,3,1] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [6,7,8,4,5,2,3,1] => ?
=> ? = 9
[1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,6,2,3,1] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [6,7,5,4,8,2,3,1] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [5,6,7,4,8,2,3,1] => ?
=> ? = 9
[1,0,1,1,0,0,1,1,1,0,0,1,0,1,0,0]
=> [7,6,4,5,8,2,3,1] => ?
=> ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [8,5,4,6,7,2,3,1] => ?
=> ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,0,1,0,0]
=> [7,5,4,6,8,2,3,1] => ?
=> ? = 17
[1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,7,8,2,3,1] => ?
=> ? = 17
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,8,2,3,1] => ?
=> ? = 10
[1,0,1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [7,4,5,6,8,2,3,1] => ?
=> ? = 11
[1,0,1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [6,4,5,7,8,2,3,1] => ?
=> ? = 11
[1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,0]
=> [5,4,6,7,8,2,3,1] => ?
=> ? = 11
Description
The cocharge of a standard tableau.
The '''cocharge''' of a standard tableau $T$, denoted $\mathrm{cc}(T)$, is defined to be the cocharge of the reading word of the tableau. The cocharge of a permutation $w_1 w_2\cdots w_n$ can be computed by the following algorithm:
1) Starting from $w_n$, scan the entries right-to-left until finding the entry $1$ with a superscript $0$.
2) Continue scanning until the $2$ is found, and label this with a superscript $1$. Then scan until the $3$ is found, labeling with a $2$, and so on, incrementing the label each time, until the beginning of the word is reached. Then go back to the end and scan again from right to left, and *do not* increment the superscript label for the first number found in the next scan. Then continue scanning and labeling, each time incrementing the superscript only if we have not cycled around the word since the last labeling.
3) The cocharge is defined as the sum of the superscript labels on the letters.
Matching statistic: St000009
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Mp00069: Permutations —complement⟶ Permutations
Mp00070: Permutations —Robinson-Schensted recording tableau⟶ Standard tableaux
St000009: Standard tableaux ⟶ ℤResult quality: 85% ●values known / values provided: 85%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [1,2] => [[1,2]]
=> 1
[1,1,0,0]
=> [1,2] => [2,1] => [[1],[2]]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,2,3] => [[1,2,3]]
=> 3
[1,0,1,1,0,0]
=> [2,3,1] => [2,1,3] => [[1,3],[2]]
=> 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => [[1,2],[3]]
=> 2
[1,1,0,1,0,0]
=> [2,1,3] => [2,3,1] => [[1,2],[3]]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => [[1],[2],[3]]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,2,3,4] => [[1,2,3,4]]
=> 6
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [2,1,3,4] => [[1,3,4],[2]]
=> 3
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,3,2,4] => [[1,2,4],[3]]
=> 4
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [2,3,1,4] => [[1,2,4],[3]]
=> 4
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [3,2,1,4] => [[1,4],[2],[3]]
=> 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,2,4,3] => [[1,2,3],[4]]
=> 5
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => [[1,3],[2,4]]
=> 2
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,3,4,2] => [[1,2,3],[4]]
=> 5
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [2,3,4,1] => [[1,2,3],[4]]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,2,4,1] => [[1,3],[2],[4]]
=> 2
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,4,3,2] => [[1,2],[3],[4]]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,4,3,1] => [[1,2],[3],[4]]
=> 3
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => [[1,2],[3],[4]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => [[1],[2],[3],[4]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,2,3,4,5] => [[1,2,3,4,5]]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [2,1,3,4,5] => [[1,3,4,5],[2]]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,3,2,4,5] => [[1,2,4,5],[3]]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [2,3,1,4,5] => [[1,2,4,5],[3]]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,2,1,4,5] => [[1,4,5],[2],[3]]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,2,4,3,5] => [[1,2,3,5],[4]]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [2,1,4,3,5] => [[1,3,5],[2,4]]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,3,4,2,5] => [[1,2,3,5],[4]]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [2,3,4,1,5] => [[1,2,3,5],[4]]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,2,4,1,5] => [[1,3,5],[2],[4]]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,4,3,2,5] => [[1,2,5],[3],[4]]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,1,5] => [[1,2,5],[3],[4]]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,4,2,1,5] => [[1,2,5],[3],[4]]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => [[1,5],[2],[3],[4]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,2,3,5,4] => [[1,2,3,4],[5]]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [2,1,3,5,4] => [[1,3,4],[2,5]]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,3,2,5,4] => [[1,2,4],[3,5]]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [2,3,1,5,4] => [[1,2,4],[3,5]]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => [[1,4],[2,5],[3]]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,2,4,5,3] => [[1,2,3,4],[5]]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [2,1,4,5,3] => [[1,3,4],[2,5]]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,3,4,5,2] => [[1,2,3,4],[5]]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [2,3,4,5,1] => [[1,2,3,4],[5]]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,2,4,5,1] => [[1,3,4],[2],[5]]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,4,3,5,2] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,5,1] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,4,2,5,1] => [[1,2,4],[3],[5]]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => [[1,4],[2],[3],[5]]
=> 2
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [7,8,6,4,5,3,2,1] => [2,1,3,5,4,6,7,8] => ?
=> ? = 17
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [8,7,5,4,6,3,2,1] => [1,2,4,5,3,6,7,8] => ?
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [8,5,6,4,7,3,2,1] => [1,4,3,5,2,6,7,8] => ?
=> ? = 18
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [8,6,4,5,7,3,2,1] => [1,3,5,4,2,6,7,8] => ?
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [7,6,8,5,3,4,2,1] => [2,3,1,4,6,5,7,8] => ?
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,3,4,2,1] => [3,2,1,4,6,5,7,8] => ?
=> ? = 12
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [8,6,5,7,3,4,2,1] => [1,3,4,2,6,5,7,8] => ?
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [8,5,6,7,3,4,2,1] => [1,4,3,2,6,5,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [6,5,7,8,3,4,2,1] => [3,4,2,1,6,5,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0]
=> [7,8,6,4,3,5,2,1] => [2,1,3,5,6,4,7,8] => ?
=> ? = 18
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,3,6,2,1] => [2,1,4,5,6,3,7,8] => ?
=> ? = 18
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,5,6,4,3,8,2,1] => [2,4,3,5,6,1,7,8] => ?
=> ? = 19
[1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [8,7,4,5,3,6,2,1] => [1,2,5,4,6,3,7,8] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [7,8,4,5,3,6,2,1] => [2,1,5,4,6,3,7,8] => ?
=> ? = 13
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [8,6,4,5,3,7,2,1] => [1,3,5,4,6,2,7,8] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,0,1,1,0,0,0]
=> [6,7,4,5,3,8,2,1] => [3,2,5,4,6,1,7,8] => ?
=> ? = 13
[1,0,1,0,1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,5,4,6,3,8,2,1] => [2,4,5,3,6,1,7,8] => ?
=> ? = 20
[1,0,1,0,1,1,0,1,1,1,0,0,0,1,0,0]
=> [7,4,5,6,3,8,2,1] => [2,5,4,3,6,1,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [7,8,6,3,4,5,2,1] => [2,1,3,6,5,4,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [8,6,5,3,4,7,2,1] => [1,3,4,6,5,2,7,8] => ?
=> ? = 21
[1,0,1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [6,7,5,3,4,8,2,1] => [3,2,4,6,5,1,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,0,1,1,0,1,0,0,0]
=> [6,5,7,3,4,8,2,1] => [3,4,2,6,5,1,7,8] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> [6,7,4,3,5,8,2,1] => [3,2,5,6,4,1,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> [5,6,4,3,7,8,2,1] => [4,3,5,6,2,1,7,8] => ?
=> ? = 14
[1,0,1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,4,5,3,6,8,2,1] => [2,5,4,6,3,1,7,8] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> [6,4,5,3,7,8,2,1] => [3,5,4,6,2,1,7,8] => ?
=> ? = 15
[1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,0]
=> [5,4,6,3,7,8,2,1] => [4,5,3,6,2,1,7,8] => ?
=> ? = 15
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [7,8,3,4,5,6,2,1] => [2,1,6,5,4,3,7,8] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [8,6,3,4,5,7,2,1] => [1,3,6,5,4,2,7,8] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [6,7,3,4,5,8,2,1] => [3,2,6,5,4,1,7,8] => ?
=> ? = 9
[1,0,1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> [6,5,3,4,7,8,2,1] => [3,4,6,5,2,1,7,8] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0]
=> [7,4,3,5,6,8,2,1] => [2,5,6,4,3,1,7,8] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,0,1,0,0,1,0,0,0]
=> [6,4,3,5,7,8,2,1] => [3,5,6,4,2,1,7,8] => ?
=> ? = 16
[1,0,1,0,1,1,1,1,1,0,0,0,0,1,0,0]
=> [7,3,4,5,6,8,2,1] => [2,6,5,4,3,1,7,8] => ?
=> ? = 10
[1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,3,4,6,7,8,2,1] => [4,6,5,3,2,1,7,8] => ?
=> ? = 10
[1,0,1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,4,2,3,1] => [3,2,1,4,5,7,6,8] => ?
=> ? = 13
[1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,4,2,3,1] => [2,1,4,3,5,7,6,8] => ?
=> ? = 14
[1,0,1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [7,5,6,8,4,2,3,1] => [2,4,3,1,5,7,6,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [6,5,7,8,4,2,3,1] => [3,4,2,1,5,7,6,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [7,8,6,4,5,2,3,1] => [2,1,3,5,4,7,6,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [7,8,5,4,6,2,3,1] => [2,1,4,5,3,7,6,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,0,1,1,0,0,0]
=> [6,7,5,4,8,2,3,1] => [3,2,4,5,1,7,6,8] => ?
=> ? = 15
[1,0,1,1,0,0,1,1,0,1,1,1,0,0,0,0]
=> [5,6,7,4,8,2,3,1] => [4,3,2,5,1,7,6,8] => ?
=> ? = 9
[1,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [8,7,4,5,6,2,3,1] => [1,2,5,4,3,7,6,8] => ?
=> ? = 17
[1,0,1,1,0,0,1,1,1,0,1,1,0,0,0,0]
=> [5,6,4,7,8,2,3,1] => [4,3,5,2,1,7,6,8] => ?
=> ? = 10
[1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0]
=> [7,8,6,5,3,2,4,1] => [2,1,3,4,6,7,5,8] => ?
=> ? = 19
[1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [8,6,7,5,3,2,4,1] => [1,3,2,4,6,7,5,8] => ?
=> ? = 20
[1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [6,7,8,5,3,2,4,1] => [3,2,1,4,6,7,5,8] => ?
=> ? = 13
[1,0,1,1,0,1,0,0,1,1,0,0,1,1,0,0]
=> [7,8,5,6,3,2,4,1] => [2,1,4,3,6,7,5,8] => ?
=> ? = 14
[1,0,1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [7,5,6,8,3,2,4,1] => [2,4,3,1,6,7,5,8] => ?
=> ? = 15
Description
The charge of a standard tableau.
Matching statistic: St000012
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 76%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000012: Dyck paths ⟶ ℤResult quality: 67% ●values known / values provided: 67%●distinct values known / distinct values provided: 76%
Values
[1,0]
=> [1] => [1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,2] => [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0]
=> [2,1] => [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [3] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0]
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,0,1,0,0,0]
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> ? = 28
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 22
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,2,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 22
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,2,1,1] => [1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,3,1] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> ? = 17
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0]
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => [1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 18
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,3,1,1] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,4,1] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> ? = 13
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 25
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 14
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 14
[1,0,1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,2,3,1] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> ? = 14
[1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 25
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 25
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 25
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,2,1,1,1,1] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0]
=> ? = 25
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,2,1,2,1] => [1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 19
[1,0,1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,2,2,1,1] => [1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,1,1,0,0,0,0,0,0]
=> ? = 20
Description
The area of a Dyck path.
This is the number of complete squares in the integer lattice which are below the path and above the x-axis. The 'half-squares' directly above the axis do not contribute to this statistic.
1. Dyck paths are bijection with '''area sequences''' $(a_1,\ldots,a_n)$ such that $a_1 = 0, a_{k+1} \leq a_k + 1$.
2. The generating function $\mathbf{D}_n(q) = \sum_{D \in \mathfrak{D}_n} q^{\operatorname{area}(D)}$ satisfy the recurrence $$\mathbf{D}_{n+1}(q) = \sum q^k \mathbf{D}_k(q) \mathbf{D}_{n-k}(q).$$
3. The area is equidistributed with [[St000005]] and [[St000006]]. Pairs of these statistics play an important role in the theory of $q,t$-Catalan numbers.
Matching statistic: St000081
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 93%
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000081: Graphs ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 93%
Values
[1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 6
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[1,1,0,1,0,1,0,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
[1,1,0,1,1,0,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,0,1,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,0,1,0,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 21
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,3] => ([(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,2,1,1] => ([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,2,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 16
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,2,1,1] => ([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,2,1,1] => ([(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,2,2] => ([(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 16
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,3,1] => ([(0,7),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,4] => ([(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 10
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 24
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,2,3] => ([(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,2,1,1,1] => ([(0,5),(0,6),(0,7),(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,2,1,2] => ([(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,2,2,1] => ([(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,2,3] => ([(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,3,1,1] => ([(0,6),(0,7),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,3,2] => ([(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,4,1] => ([(0,7),(1,7),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,5] => ([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,2,1,1,2] => ([(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 18
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1,2,1] => ([(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,2,1,3] => ([(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 12
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,2,2,1,1] => ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2,2] => ([(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
[1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 14
[1,0,1,0,1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,2,3,1] => ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 14
Description
The number of edges of a graph.
Matching statistic: St000579
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00138: Dyck paths —to noncrossing partition⟶ Set partitions
St000579: Set partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 76%
St000579: Set partitions ⟶ ℤResult quality: 53% ●values known / values provided: 53%●distinct values known / distinct values provided: 76%
Values
[1,0]
=> {{1}}
=> ? = 0
[1,0,1,0]
=> {{1},{2}}
=> 1
[1,1,0,0]
=> {{1,2}}
=> 0
[1,0,1,0,1,0]
=> {{1},{2},{3}}
=> 3
[1,0,1,1,0,0]
=> {{1},{2,3}}
=> 1
[1,1,0,0,1,0]
=> {{1,2},{3}}
=> 2
[1,1,0,1,0,0]
=> {{1,3},{2}}
=> 2
[1,1,1,0,0,0]
=> {{1,2,3}}
=> 0
[1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> 6
[1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> 3
[1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> 4
[1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> 4
[1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> 1
[1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> 5
[1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> 2
[1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> 5
[1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> 5
[1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> 2
[1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> 3
[1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> 3
[1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> 3
[1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> 10
[1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> 6
[1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> 7
[1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> 7
[1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> 3
[1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> 8
[1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> 4
[1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> 8
[1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> 8
[1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> 4
[1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> 5
[1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> 5
[1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> 5
[1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> 9
[1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> 5
[1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> 6
[1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> 6
[1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> 9
[1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> 5
[1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> 9
[1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> 9
[1,1,0,1,0,1,1,0,0,0]
=> {{1,4,5},{2},{3}}
=> 5
[1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> 6
[1,1,0,1,1,0,0,1,0,0]
=> {{1,5},{2},{3,4}}
=> 6
[1,1,0,1,1,0,1,0,0,0]
=> {{1,3,5},{2},{4}}
=> 6
[1,1,0,1,1,1,0,0,0,0]
=> {{1,3,4,5},{2}}
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> 7
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5},{6},{7},{8}}
=> ? = 28
[1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4},{5},{6},{7,8}}
=> ? = 21
[1,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4},{5},{6,7},{8}}
=> ? = 22
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4},{5},{6,8},{7}}
=> ? = 22
[1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4},{5},{6,7,8}}
=> ? = 15
[1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3},{4},{5,6},{7},{8}}
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3},{4},{5,6},{7,8}}
=> ? = 16
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> {{1},{2},{3},{4},{5,7},{6},{8}}
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> {{1},{2},{3},{4},{5,8},{6},{7}}
=> ? = 23
[1,0,1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> {{1},{2},{3},{4},{5,7,8},{6}}
=> ? = 16
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> {{1},{2},{3},{4},{5,6,7},{8}}
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> {{1},{2},{3},{4},{5,8},{6,7}}
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> {{1},{2},{3},{4},{5,6,8},{7}}
=> ? = 17
[1,0,1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4},{5,6,7,8}}
=> ? = 10
[1,0,1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4,5},{6},{7},{8}}
=> ? = 24
[1,0,1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5},{6},{7,8}}
=> ? = 17
[1,0,1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> {{1},{2},{3},{4,5},{6,7},{8}}
=> ? = 18
[1,0,1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> {{1},{2},{3},{4,5},{6,8},{7}}
=> ? = 18
[1,0,1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> {{1},{2},{3},{4,5},{6,7,8}}
=> ? = 11
[1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> {{1},{2},{3},{4,6},{5},{7},{8}}
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> {{1},{2},{3},{4,6},{5},{7,8}}
=> ? = 17
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> {{1},{2},{3},{4,7},{5},{6},{8}}
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> {{1},{2},{3},{4,8},{5},{6},{7}}
=> ? = 24
[1,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> {{1},{2},{3},{4,7,8},{5},{6}}
=> ? = 17
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> {{1},{2},{3},{4,6,7},{5},{8}}
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> {{1},{2},{3},{4,8},{5},{6,7}}
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> {{1},{2},{3},{4,6,8},{5},{7}}
=> ? = 18
[1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> {{1},{2},{3},{4,6,7,8},{5}}
=> ? = 11
[1,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> {{1},{2},{3},{4,5,6},{7},{8}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> {{1},{2},{3},{4,5,6},{7,8}}
=> ? = 12
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> {{1},{2},{3},{4,7},{5,6},{8}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> {{1},{2},{3},{4,8},{5,6},{7}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> {{1},{2},{3},{4,7,8},{5,6}}
=> ? = 12
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> {{1},{2},{3},{4,5,7},{6},{8}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> {{1},{2},{3},{4,8},{5,7},{6}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> {{1},{2},{3},{4,5,8},{6},{7}}
=> ? = 19
[1,0,1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> {{1},{2},{3},{4,5,7,8},{6}}
=> ? = 12
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> {{1},{2},{3},{4,5,6,7},{8}}
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> {{1},{2},{3},{4,8},{5,6,7}}
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> {{1},{2},{3},{4,5,8},{6,7}}
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> {{1},{2},{3},{4,5,6,8},{7}}
=> ? = 13
[1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> {{1},{2},{3},{4,5,6,7,8}}
=> ? = 6
[1,0,1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3,4},{5},{6},{7},{8}}
=> ? = 25
[1,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4},{5},{6},{7,8}}
=> ? = 18
[1,0,1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5},{6,7},{8}}
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,4},{5},{6,8},{7}}
=> ? = 19
[1,0,1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4},{5},{6,7,8}}
=> ? = 12
[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> {{1},{2},{3,4},{5,6},{7},{8}}
=> ? = 20
[1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> {{1},{2},{3,4},{5,6},{7,8}}
=> ? = 13
Description
The number of occurrences of the pattern {{1},{2}} such that 2 is a maximal element.
This is the number of pairs $i\lt j$ in different blocks such that $j$ is the maximal element of a block.
The following 22 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000492The rob statistic of a set partition. St000499The rcb statistic of a set partition. St001759The Rajchgot index of a permutation. St000794The mak of a permutation. St000797The stat`` of a permutation. St000798The makl of a permutation. St000246The number of non-inversions of a permutation. St000446The disorder of a permutation. St000018The number of inversions of a permutation. St000833The comajor index of a permutation. St000004The major index of a permutation. St000005The bounce statistic of a Dyck path. St000156The Denert index of a permutation. St000305The inverse major index of a permutation. St000133The "bounce" of a permutation. St000154The sum of the descent bottoms of a permutation. St000304The load of a permutation. St001295Gives the vector space dimension of the homomorphism space between J^2 and J^2. St001311The cyclomatic number of a graph. St000450The number of edges minus the number of vertices plus 2 of a graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!