searching the database
Your data matches 41 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000055
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000055: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 3
[3,1,2] => 3
[3,2,1] => 4
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 4
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 3
[2,3,4,1] => 6
[2,4,1,3] => 5
[2,4,3,1] => 7
[3,1,2,4] => 3
[3,1,4,2] => 5
[3,2,1,4] => 4
[3,2,4,1] => 7
[3,4,1,2] => 8
[3,4,2,1] => 9
[4,1,2,3] => 6
[4,1,3,2] => 7
[4,2,1,3] => 7
[4,2,3,1] => 9
[4,3,1,2] => 9
[4,3,2,1] => 10
Description
The inversion sum of a permutation.
A pair $a < b$ is an inversion of a permutation $\pi$ if $\pi(a) > \pi(b)$. The inversion sum is given by $\sum(b-a)$ over all inversions of $\pi$.
This is also half of the metric associated with Spearmans coefficient of association $\rho$, $\sum_i (\pi_i - i)^2$, see [5].
This is also equal to the total number of occurrences of the classical permutation patterns $[2,1], [2, 3, 1], [3, 1, 2]$, and $[3, 2, 1]$, see [2].
This is also equal to the rank of the permutation inside the alternating sign matrix lattice, see references [2] and [3].
This lattice is the MacNeille completion of the strong Bruhat order on the symmetric group [1], which means it is the smallest lattice containing the Bruhat order as a subposet. This is a distributive lattice, so the rank of each element is given by the cardinality of the associated order ideal. The rank is calculated by summing the entries of the corresponding ''monotone triangle'' and subtracting $\binom{n+2}{3}$, which is the sum of the entries of the monotone triangle corresponding to the identity permutation of $n$.
This is also the number of bigrassmannian permutations (that is, permutations with exactly one left descent and one right descent) below a given permutation $\pi$ in Bruhat order, see Theorem 1 of [6].
Matching statistic: St001171
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St001171: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 3
[3,1,2] => 3
[3,2,1] => 4
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 4
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 3
[2,3,4,1] => 6
[2,4,1,3] => 5
[2,4,3,1] => 7
[3,1,2,4] => 3
[3,1,4,2] => 5
[3,2,1,4] => 4
[3,2,4,1] => 7
[3,4,1,2] => 8
[3,4,2,1] => 9
[4,1,2,3] => 6
[4,1,3,2] => 7
[4,2,1,3] => 7
[4,2,3,1] => 9
[4,3,1,2] => 9
[4,3,2,1] => 10
Description
The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$.
Matching statistic: St000076
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000076: Alternating sign matrices ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [[1]]
=> 0
[1,2] => [[1,0],[0,1]]
=> 0
[2,1] => [[0,1],[1,0]]
=> 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 3
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 3
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> 4
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 3
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 3
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> 4
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 3
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 6
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 5
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> 7
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 3
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 5
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> 4
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> 7
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 8
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> 9
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 6
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> 7
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> 7
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> 9
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> 9
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 10
Description
The rank of the alternating sign matrix in the alternating sign matrix poset.
This rank is the sum of the entries of the monotone triangle minus $\binom{n+2}{3}$, which is the smallest sum of the entries in the set of all monotone triangles with bottom row $1\dots n$.
Alternatively, $rank(A)=\frac{1}{2} \sum_{i,j=1}^n (i-j)^2 a_{ij}$, see [3, thm.5.1].
Matching statistic: St000341
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00069: Permutations —complement⟶ Permutations
St000341: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000341: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [2,1] => 0
[2,1] => [1,2] => 1
[1,2,3] => [3,2,1] => 0
[1,3,2] => [3,1,2] => 1
[2,1,3] => [2,3,1] => 1
[2,3,1] => [2,1,3] => 3
[3,1,2] => [1,3,2] => 3
[3,2,1] => [1,2,3] => 4
[1,2,3,4] => [4,3,2,1] => 0
[1,2,4,3] => [4,3,1,2] => 1
[1,3,2,4] => [4,2,3,1] => 1
[1,3,4,2] => [4,2,1,3] => 3
[1,4,2,3] => [4,1,3,2] => 3
[1,4,3,2] => [4,1,2,3] => 4
[2,1,3,4] => [3,4,2,1] => 1
[2,1,4,3] => [3,4,1,2] => 2
[2,3,1,4] => [3,2,4,1] => 3
[2,3,4,1] => [3,2,1,4] => 6
[2,4,1,3] => [3,1,4,2] => 5
[2,4,3,1] => [3,1,2,4] => 7
[3,1,2,4] => [2,4,3,1] => 3
[3,1,4,2] => [2,4,1,3] => 5
[3,2,1,4] => [2,3,4,1] => 4
[3,2,4,1] => [2,3,1,4] => 7
[3,4,1,2] => [2,1,4,3] => 8
[3,4,2,1] => [2,1,3,4] => 9
[4,1,2,3] => [1,4,3,2] => 6
[4,1,3,2] => [1,4,2,3] => 7
[4,2,1,3] => [1,3,4,2] => 7
[4,2,3,1] => [1,3,2,4] => 9
[4,3,1,2] => [1,2,4,3] => 9
[4,3,2,1] => [1,2,3,4] => 10
Description
The non-inversion sum of a permutation.
A pair $a < b$ is an noninversion of a permutation $\pi$ if $\pi(a) < \pi(b)$. The non-inversion sum is given by $\sum(b-a)$ over all non-inversions of $\pi$.
Matching statistic: St001848
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00170: Permutations —to signed permutation⟶ Signed permutations
St001848: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St001848: Signed permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => 0
[1,2] => [1,2] => 0
[2,1] => [2,1] => 1
[1,2,3] => [1,2,3] => 0
[1,3,2] => [1,3,2] => 1
[2,1,3] => [2,1,3] => 1
[2,3,1] => [2,3,1] => 3
[3,1,2] => [3,1,2] => 3
[3,2,1] => [3,2,1] => 4
[1,2,3,4] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => 1
[1,3,2,4] => [1,3,2,4] => 1
[1,3,4,2] => [1,3,4,2] => 3
[1,4,2,3] => [1,4,2,3] => 3
[1,4,3,2] => [1,4,3,2] => 4
[2,1,3,4] => [2,1,3,4] => 1
[2,1,4,3] => [2,1,4,3] => 2
[2,3,1,4] => [2,3,1,4] => 3
[2,3,4,1] => [2,3,4,1] => 6
[2,4,1,3] => [2,4,1,3] => 5
[2,4,3,1] => [2,4,3,1] => 7
[3,1,2,4] => [3,1,2,4] => 3
[3,1,4,2] => [3,1,4,2] => 5
[3,2,1,4] => [3,2,1,4] => 4
[3,2,4,1] => [3,2,4,1] => 7
[3,4,1,2] => [3,4,1,2] => 8
[3,4,2,1] => [3,4,2,1] => 9
[4,1,2,3] => [4,1,2,3] => 6
[4,1,3,2] => [4,1,3,2] => 7
[4,2,1,3] => [4,2,1,3] => 7
[4,2,3,1] => [4,2,3,1] => 9
[4,3,1,2] => [4,3,1,2] => 9
[4,3,2,1] => [4,3,2,1] => 10
Description
The atomic length of a signed permutation.
The atomic length of an element $w$ of a Weyl group is the sum of the heights of the inversions of $w$.
Matching statistic: St000080
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000080: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000080: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Values
[1] => [[1]]
=> [[1]]
=> ([],1)
=> 0
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 0
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 0
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 0
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 3
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 5
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 8
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 9
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 10
Description
The rank of the poset.
Matching statistic: St000528
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000528: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000528: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Values
[1] => [[1]]
=> [[1]]
=> ([],1)
=> 1 = 0 + 1
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 8 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 9 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 10 + 1
Description
The height of a poset.
This equals the rank of the poset [[St000080]] plus one.
Matching statistic: St000912
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000912: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St000912: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Values
[1] => [[1]]
=> [[1]]
=> ([],1)
=> 1 = 0 + 1
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 8 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 9 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 10 + 1
Description
The number of maximal antichains in a poset.
Matching statistic: St001343
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001343: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001343: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Values
[1] => [[1]]
=> [[1]]
=> ([],1)
=> 1 = 0 + 1
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 8 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 9 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 10 + 1
Description
The dimension of the reduced incidence algebra of a poset.
The reduced incidence algebra of a poset is the subalgebra of the incidence algebra consisting of the elements which assign the same value to any two intervals that are isomorphic to each other as posets.
Thus, this statistic returns the number of non-isomorphic intervals of the poset.
Matching statistic: St001636
Mp00063: Permutations —to alternating sign matrix⟶ Alternating sign matrices
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001636: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Mp00001: Alternating sign matrices —to semistandard tableau via monotone triangles⟶ Semistandard tableaux
Mp00214: Semistandard tableaux —subcrystal⟶ Posets
St001636: Posets ⟶ ℤResult quality: 36% ●values known / values provided: 52%●distinct values known / distinct values provided: 36%
Values
[1] => [[1]]
=> [[1]]
=> ([],1)
=> 1 = 0 + 1
[1,2] => [[1,0],[0,1]]
=> [[1,1],[2]]
=> ([],1)
=> 1 = 0 + 1
[2,1] => [[0,1],[1,0]]
=> [[1,2],[2]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> [[1,1,1],[2,2],[3]]
=> ([],1)
=> 1 = 0 + 1
[1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> [[1,1,1],[2,3],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> [[1,1,2],[2,2],[3]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> [[1,1,3],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> [[1,2,2],[2,3],[3]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,2,1] => [[0,0,1],[0,1,0],[1,0,0]]
=> [[1,2,3],[2,3],[3]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,2],[3,3],[4]]
=> ([],1)
=> 1 = 0 + 1
[1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,1],[2,2,2],[3,4],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,1],[2,2,3],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,1],[2,2,4],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,1],[2,3,3],[3,4],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[1,4,3,2] => [[1,0,0,0],[0,0,0,1],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,1],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [[1,1,1,2],[2,2,2],[3,3],[4]]
=> ([(0,1)],2)
=> 2 = 1 + 1
[2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [[1,1,1,2],[2,2,2],[3,4],[4]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 3 = 2 + 1
[2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [[1,1,1,3],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [[1,1,1,4],[2,2,4],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> [[1,1,1,3],[2,3,3],[3,4],[4]]
=> ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)
=> ? = 5 + 1
[2,4,3,1] => [[0,0,0,1],[1,0,0,0],[0,0,1,0],[0,1,0,0]]
=> [[1,1,1,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,2],[2,2,3],[3,3],[4]]
=> ([(0,3),(2,1),(3,2)],4)
=> 4 = 3 + 1
[3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,2],[2,2,4],[3,4],[4]]
=> ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10)
=> ? = 5 + 1
[3,2,1,4] => [[0,0,1,0],[0,1,0,0],[1,0,0,0],[0,0,0,1]]
=> [[1,1,2,3],[2,2,3],[3,3],[4]]
=> ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8)
=> ? = 4 + 1
[3,2,4,1] => [[0,0,0,1],[0,1,0,0],[1,0,0,0],[0,0,1,0]]
=> [[1,1,2,4],[2,2,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,3],[2,3,4],[3,4],[4]]
=> ([(0,8),(2,11),(2,12),(3,10),(4,9),(5,4),(5,14),(6,3),(6,14),(7,1),(8,5),(8,6),(9,11),(9,13),(10,12),(10,13),(11,15),(12,15),(13,15),(14,2),(14,9),(14,10),(15,7)],16)
=> ? = 8 + 1
[3,4,2,1] => [[0,0,0,1],[0,0,1,0],[1,0,0,0],[0,1,0,0]]
=> [[1,1,3,4],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,2],[2,3,3],[3,4],[4]]
=> ([(0,5),(2,7),(3,7),(4,1),(5,6),(6,2),(6,3),(7,4)],8)
=> ? = 6 + 1
[4,1,3,2] => [[0,1,0,0],[0,0,0,1],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,2],[2,3,4],[3,4],[4]]
=> ([(0,7),(0,8),(1,12),(2,11),(3,10),(4,10),(4,11),(5,3),(6,1),(6,13),(7,9),(8,5),(9,2),(9,4),(10,14),(11,6),(11,14),(13,12),(14,13)],15)
=> ? = 7 + 1
[4,2,1,3] => [[0,0,1,0],[0,1,0,0],[0,0,0,1],[1,0,0,0]]
=> [[1,2,2,3],[2,3,3],[3,4],[4]]
=> ([(0,5),(0,10),(1,16),(2,15),(3,14),(4,13),(5,12),(6,2),(6,13),(7,4),(7,14),(8,1),(9,6),(10,11),(10,12),(11,3),(11,7),(12,9),(13,15),(14,8),(15,16)],17)
=> ? = 7 + 1
[4,2,3,1] => [[0,0,0,1],[0,1,0,0],[0,0,1,0],[1,0,0,0]]
=> [[1,2,2,4],[2,3,4],[3,4],[4]]
=> ([(0,14),(0,15),(1,19),(2,18),(3,29),(4,30),(5,22),(6,23),(7,24),(7,25),(8,9),(9,7),(9,18),(9,19),(10,5),(11,6),(12,2),(12,29),(13,1),(13,30),(14,16),(14,28),(15,17),(15,28),(16,3),(16,12),(17,4),(17,13),(18,24),(18,27),(19,25),(19,27),(20,26),(21,26),(22,20),(23,21),(24,22),(24,31),(25,23),(25,31),(27,31),(28,8),(29,10),(30,11),(31,20),(31,21)],32)
=> ? = 9 + 1
[4,3,1,2] => [[0,0,1,0],[0,0,0,1],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,3],[2,3,4],[3,4],[4]]
=> ([(0,13),(0,15),(1,17),(2,16),(2,17),(3,19),(4,16),(4,18),(5,22),(6,21),(7,20),(8,23),(8,29),(9,4),(9,28),(10,3),(10,28),(11,6),(12,7),(12,24),(13,14),(14,1),(14,2),(15,9),(15,10),(16,25),(17,12),(17,25),(18,26),(18,29),(19,23),(19,26),(20,27),(22,27),(23,30),(24,20),(24,22),(25,24),(26,30),(27,21),(28,8),(28,18),(28,19),(29,5),(29,30),(30,11)],31)
=> ? = 9 + 1
[4,3,2,1] => [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> [[1,2,3,4],[2,3,4],[3,4],[4]]
=> ([(0,5),(0,16),(0,17),(1,23),(2,19),(3,11),(3,21),(4,10),(4,20),(5,12),(5,13),(6,50),(7,51),(8,24),(8,58),(9,25),(9,59),(10,14),(10,52),(11,15),(11,53),(12,26),(12,60),(13,27),(13,60),(14,54),(15,55),(16,4),(16,29),(17,3),(17,29),(18,48),(18,49),(19,32),(19,33),(20,46),(20,52),(21,47),(21,53),(22,34),(22,35),(23,18),(23,54),(23,55),(24,40),(24,42),(25,41),(25,43),(26,46),(26,56),(27,47),(27,57),(28,63),(29,1),(30,62),(31,61),(32,61),(33,61),(34,6),(34,62),(35,7),(35,62),(36,58),(37,59),(38,32),(39,33),(40,44),(41,45),(42,38),(43,39),(44,31),(45,31),(46,36),(47,37),(48,40),(48,63),(49,41),(49,63),(50,38),(51,39),(52,8),(52,36),(53,9),(53,37),(54,28),(54,48),(55,28),(55,49),(56,30),(56,34),(57,30),(57,35),(58,42),(58,50),(59,43),(59,51),(60,22),(60,56),(60,57),(62,2),(63,44),(63,45)],64)
=> ? = 10 + 1
Description
The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset.
The following 31 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001782The order of rowmotion on the set of order ideals of a poset. St001397Number of pairs of incomparable elements in a finite poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000680The Grundy value for Hackendot on posets. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St000643The size of the largest orbit of antichains under Panyushev complementation. St001877Number of indecomposable injective modules with projective dimension 2. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000736The last entry in the first row of a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001520The number of strict 3-descents. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001948The number of augmented double ascents of a permutation. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001569The maximal modular displacement of a permutation. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St001235The global dimension of the corresponding Comp-Nakayama algebra.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!