searching the database
Your data matches 26 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000679
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
St000679: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> 1 = 0 + 1
[[[]]]
=> 1 = 0 + 1
[[],[],[]]
=> 1 = 0 + 1
[[],[[]]]
=> 1 = 0 + 1
[[[]],[]]
=> 1 = 0 + 1
[[[],[]]]
=> 2 = 1 + 1
[[[[]]]]
=> 1 = 0 + 1
[[],[],[],[]]
=> 1 = 0 + 1
[[],[],[[]]]
=> 1 = 0 + 1
[[],[[]],[]]
=> 1 = 0 + 1
[[],[[],[]]]
=> 2 = 1 + 1
[[],[[[]]]]
=> 1 = 0 + 1
[[[]],[],[]]
=> 1 = 0 + 1
[[[]],[[]]]
=> 1 = 0 + 1
[[[],[]],[]]
=> 2 = 1 + 1
[[[[]]],[]]
=> 1 = 0 + 1
[[[],[],[]]]
=> 2 = 1 + 1
[[[],[[]]]]
=> 2 = 1 + 1
[[[[]],[]]]
=> 2 = 1 + 1
[[[[],[]]]]
=> 2 = 1 + 1
[[[[[]]]]]
=> 1 = 0 + 1
[[],[],[],[],[]]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> 2 = 1 + 1
[[],[],[[[]]]]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> 2 = 1 + 1
[[],[[[]]],[]]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> 2 = 1 + 1
[[],[[],[[]]]]
=> 2 = 1 + 1
[[],[[[]],[]]]
=> 2 = 1 + 1
[[],[[[],[]]]]
=> 2 = 1 + 1
[[],[[[[]]]]]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> 2 = 1 + 1
[[[]],[[[]]]]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> 2 = 1 + 1
[[[[]]],[],[]]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> 2 = 1 + 1
[[[[]]],[[]]]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> 2 = 1 + 1
[[[],[[]]],[]]
=> 2 = 1 + 1
[[[[]],[]],[]]
=> 2 = 1 + 1
[[[[],[]]],[]]
=> 2 = 1 + 1
[[[[[]]]],[]]
=> 1 = 0 + 1
[[[],[],[],[]]]
=> 2 = 1 + 1
Description
The pruning number of an ordered tree.
A hanging branch of an ordered tree is a proper factor of the form $[^r]^r$ for some $r\geq 1$. A hanging branch is a maximal hanging branch if it is not a proper factor of another hanging branch.
A pruning of an ordered tree is the act of deleting all its maximal hanging branches. The pruning order of an ordered tree is the number of prunings required to reduce it to $[]$.
Matching statistic: St000396
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
St000396: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
St000396: Binary trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> 1 = 0 + 1
[[[]]]
=> [[.,.],.]
=> 1 = 0 + 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> 1 = 0 + 1
[[],[[]]]
=> [.,[[.,.],.]]
=> 1 = 0 + 1
[[[]],[]]
=> [[.,[.,.]],.]
=> 1 = 0 + 1
[[[],[]]]
=> [[.,.],[.,.]]
=> 2 = 1 + 1
[[[[]]]]
=> [[[.,.],.],.]
=> 1 = 0 + 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> 1 = 0 + 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> 1 = 0 + 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> 1 = 0 + 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> 2 = 1 + 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> 1 = 0 + 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> 1 = 0 + 1
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> 1 = 0 + 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> 2 = 1 + 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> 1 = 0 + 1
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> 2 = 1 + 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> 2 = 1 + 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> 2 = 1 + 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> 2 = 1 + 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> 1 = 0 + 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> 2 = 1 + 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> 2 = 1 + 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> 2 = 1 + 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> 2 = 1 + 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> 2 = 1 + 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> 2 = 1 + 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> 2 = 1 + 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> 2 = 1 + 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> 2 = 1 + 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> 2 = 1 + 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> 2 = 1 + 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> 2 = 1 + 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> 2 = 1 + 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> 1 = 0 + 1
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> 2 = 1 + 1
Description
The register function (or Horton-Strahler number) of a binary tree.
This is different from the dimension of the associated poset for the tree $[[[.,.],[.,.]],[[.,.],[.,.]]]$: its register function is 3, whereas the dimension of the associated poset is 2.
Matching statistic: St001174
(load all 15 compositions to match this statistic)
(load all 15 compositions to match this statistic)
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001174: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St001174: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [1,0,1,0]
=> [1,2] => 0
[[[]]]
=> [1,1,0,0]
=> [2,1] => 0
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,2,3] => 0
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,3,2] => 0
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,1,3] => 0
[[[],[]]]
=> [1,1,0,1,0,0]
=> [2,3,1] => 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [3,2,1] => 0
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 0
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 0
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 0
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 0
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 0
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 0
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 0
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 0
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => 0
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => 0
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => 0
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 0
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 0
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => 0
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => 0
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,2,3,1,5] => 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => 0
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 1
Description
The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
Matching statistic: St000298
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000298: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00013: Binary trees —to poset⟶ Posets
St000298: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[]]]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[],[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[[[]]]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
Description
The order dimension or Dushnik-Miller dimension of a poset.
This is the minimal number of linear orderings whose intersection is the given poset.
Matching statistic: St000846
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00013: Binary trees —to poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[]]]
=> [[.,.],.]
=> ([(0,1)],2)
=> 1 = 0 + 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[],[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> 2 = 1 + 1
[[[[]]]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 1 + 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> 2 = 1 + 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2 = 1 + 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2 = 1 + 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2 = 1 + 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2 = 1 + 1
Description
The maximal number of elements covering an element of a poset.
Matching statistic: St000920
(load all 13 compositions to match this statistic)
(load all 13 compositions to match this statistic)
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
St000920: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 0 + 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 0 + 1
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1 = 0 + 1
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1 = 0 + 1
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,1,1,0,0,0]
=> 2 = 1 + 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1 = 0 + 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1 = 0 + 1
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1 = 0 + 1
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1 = 0 + 1
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1 = 0 + 1
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2 = 1 + 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1 = 0 + 1
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1 = 0 + 1
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2 = 1 + 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1 = 0 + 1
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
Description
The logarithmic height of a Dyck path.
This is the floor of the binary logarithm of the usual height increased by one:
$$
\lfloor\log_2(1+height(D))\rfloor
$$
Matching statistic: St000397
(load all 4 compositions to match this statistic)
(load all 4 compositions to match this statistic)
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000397: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00008: Binary trees —to complete tree⟶ Ordered trees
St000397: Ordered trees ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> [[],[[],[]]]
=> 2 = 0 + 2
[[[]]]
=> [[.,.],.]
=> [[[],[]],[]]
=> 2 = 0 + 2
[[],[],[]]
=> [.,[.,[.,.]]]
=> [[],[[],[[],[]]]]
=> 2 = 0 + 2
[[],[[]]]
=> [.,[[.,.],.]]
=> [[],[[[],[]],[]]]
=> 2 = 0 + 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [[[],[[],[]]],[]]
=> 2 = 0 + 2
[[[],[]]]
=> [[.,.],[.,.]]
=> [[[],[]],[[],[]]]
=> 3 = 1 + 2
[[[[]]]]
=> [[[.,.],.],.]
=> [[[[],[]],[]],[]]
=> 2 = 0 + 2
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [[],[[],[[],[[],[]]]]]
=> 2 = 0 + 2
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [[],[[],[[[],[]],[]]]]
=> 2 = 0 + 2
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> [[],[[[],[[],[]]],[]]]
=> 2 = 0 + 2
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> [[],[[[],[]],[[],[]]]]
=> 3 = 1 + 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [[],[[[[],[]],[]],[]]]
=> 2 = 0 + 2
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> [[[],[[],[[],[]]]],[]]
=> 2 = 0 + 2
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> [[[],[[[],[]],[]]],[]]
=> 2 = 0 + 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [[[],[[],[]]],[[],[]]]
=> 3 = 1 + 2
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> [[[[],[[],[]]],[]],[]]
=> 2 = 0 + 2
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> [[[],[]],[[],[[],[]]]]
=> 3 = 1 + 2
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> [[[],[]],[[[],[]],[]]]
=> 3 = 1 + 2
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> [[[[],[]],[]],[[],[]]]
=> 3 = 1 + 2
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> [[[[],[]],[[],[]]],[]]
=> 3 = 1 + 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [[[[[],[]],[]],[]],[]]
=> 2 = 0 + 2
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [[],[[],[[],[[],[[],[]]]]]]
=> 2 = 0 + 2
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [[],[[],[[],[[[],[]],[]]]]]
=> 2 = 0 + 2
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> [[],[[],[[[],[[],[]]],[]]]]
=> 2 = 0 + 2
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> [[],[[],[[[],[]],[[],[]]]]]
=> 3 = 1 + 2
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [[],[[],[[[[],[]],[]],[]]]]
=> 2 = 0 + 2
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> [[],[[[],[[],[[],[]]]],[]]]
=> 2 = 0 + 2
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> [[],[[[],[[[],[]],[]]],[]]]
=> 2 = 0 + 2
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [[],[[[],[[],[]]],[[],[]]]]
=> 3 = 1 + 2
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> [[],[[[[],[[],[]]],[]],[]]]
=> 2 = 0 + 2
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> [[],[[[],[]],[[],[[],[]]]]]
=> 3 = 1 + 2
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> [[],[[[],[]],[[[],[]],[]]]]
=> 3 = 1 + 2
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> [[],[[[[],[]],[]],[[],[]]]]
=> 3 = 1 + 2
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> [[],[[[[],[]],[[],[]]],[]]]
=> 3 = 1 + 2
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [[],[[[[[],[]],[]],[]],[]]]
=> 2 = 0 + 2
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [[[],[[],[[],[[],[]]]]],[]]
=> 2 = 0 + 2
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> [[[],[[],[[[],[]],[]]]],[]]
=> 2 = 0 + 2
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [[[],[[[],[[],[]]],[]]],[]]
=> 2 = 0 + 2
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> [[[],[]],[[[],[]],[[],[]]]]
=> 3 = 1 + 2
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> [[[],[[[[],[]],[]],[]]],[]]
=> 2 = 0 + 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [[[],[[],[]]],[[],[[],[]]]]
=> 3 = 1 + 2
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [[[[],[[],[[],[]]]],[]],[]]
=> 2 = 0 + 2
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [[[],[[],[]]],[[[],[]],[]]]
=> 3 = 1 + 2
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> [[[[],[[[],[]],[]]],[]],[]]
=> 2 = 0 + 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [[[],[[],[[],[]]]],[[],[]]]
=> 3 = 1 + 2
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [[[],[[[],[]],[]]],[[],[]]]
=> 3 = 1 + 2
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [[[[],[[],[]]],[]],[[],[]]]
=> 3 = 1 + 2
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [[[[],[[],[]]],[[],[]]],[]]
=> 3 = 1 + 2
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> [[[[[],[[],[]]],[]],[]],[]]
=> 2 = 0 + 2
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [[[],[]],[[],[[],[[],[]]]]]
=> 3 = 1 + 2
Description
The Strahler number of a rooted tree.
Matching statistic: St000535
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000535: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000535: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 0
[[[]]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 0
[[],[],[]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[],[[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[[],[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The rank-width of a graph.
Matching statistic: St001333
Mp00139: Ordered trees —Zeilberger's Strahler bijection⟶ Binary trees
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00013: Binary trees —to poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [.,[.,.]]
=> ([(0,1)],2)
=> ([],2)
=> 0
[[[]]]
=> [[.,.],.]
=> ([(0,1)],2)
=> ([],2)
=> 0
[[],[],[]]
=> [.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[],[[]]]
=> [.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[[]],[]]
=> [[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[[],[]]]
=> [[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1
[[[[]]]]
=> [[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[[]],[]]
=> [.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[[],[]]]
=> [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[]],[],[]]
=> [[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[]],[[]]]
=> [[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[]]],[]]
=> [[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[[],[],[]]]
=> [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[],[[]]]]
=> [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[]],[]]]
=> [[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 1
[[[[],[]]]]
=> [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(2,3)],4)
=> 1
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[[]],[]]
=> [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[],[[],[]]]
=> [.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[]],[],[]]
=> [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[]],[[]]]
=> [.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[]]],[]]
=> [.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[],[[],[],[]]]
=> [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[],[[]]]]
=> [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[]],[]]]
=> [.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[],[[[],[]]]]
=> [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(3,4)],5)
=> 1
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[],[],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[],[[]]]
=> [[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[]],[[],[]]]
=> [[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[]],[[[]]]]
=> [[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4)],5)
=> 1
[[[[]]],[[]]]
=> [[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[[]],[]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
[[[[],[]]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(2,4),(3,4)],5)
=> 1
[[[[[]]]],[]]
=> [[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[[[],[],[],[]]]
=> [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 1
Description
The cardinality of a minimal edge-isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with one edge.
Matching statistic: St001335
Mp00051: Ordered trees —to Dyck path⟶ Dyck paths
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[],[]]
=> [1,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 0
[[[]]]
=> [1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 0
[[],[],[]]
=> [1,0,1,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[[]]]
=> [1,0,1,1,0,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 0
[[[]],[]]
=> [1,1,0,0,1,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 0
[[[],[]]]
=> [1,1,0,1,0,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[[[[]]]]
=> [1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 0
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 0
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 1
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 1
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 0
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 0
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 0
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 0
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 0
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 0
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)
=> 1
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 1
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 0
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 1
Description
The cardinality of a minimal cycle-isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains all cycles.
The following 16 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001393The induced matching number of a graph. St000845The maximal number of elements covered by an element in a poset. St000862The number of parts of the shifted shape of a permutation. St001261The Castelnuovo-Mumford regularity of a graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St000793The length of the longest partition in the vacillating tableau corresponding to a set partition. St000455The second largest eigenvalue of a graph if it is integral. St000640The rank of the largest boolean interval in a poset. St000307The number of rowmotion orbits of a poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000259The diameter of a connected graph. St001330The hat guessing number of a graph. St000264The girth of a graph, which is not a tree. St000805The number of peaks of the associated bargraph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!