Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001192: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Mp00028: Dyck paths reverseDyck paths
St001239: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,1,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3 = 2 + 1
Description
The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra.
Matching statistic: St000651
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000651: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1] => 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,2] => 1
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [2,1] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [3,1,2] => 1
[1,0,1,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [3,1,2] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [2,1,3] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [3,4,1,2] => 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
Description
The maximal size of a rise in a permutation. This is $\max_i \sigma_{i+1}-\sigma_i$, except for the permutations without rises, where it is $0$.
Matching statistic: St000308
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
St000308: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,2] => 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [2,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,1,3] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [2,3,1] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,2,3] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [4,3,1,2,5] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [5,3,1,2,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [4,2,1,3,5] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [3,2,1,4,5] => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [5,2,1,3,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [4,5,1,2,3] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [3,4,1,2,5] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [2,3,1,4,5] => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 3 = 2 + 1
Description
The height of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The statistic is given by the height of this tree. See also [[St000325]] for the width of this tree.
Matching statistic: St000381
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> [1] => 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [2] => 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [2,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [2,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> [1,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [3] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [2,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [1,2,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [1,2,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [3,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [3,1] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3,1] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,3] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [4] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 3 = 2 + 1
Description
The largest part of an integer composition.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St000392: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 1100 => 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 110010 => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 101100 => 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 111000 => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 11010100 => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 11010010 => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 11001100 => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 11011000 => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 11001010 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 10110100 => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 10110010 => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 11100100 => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 11101000 => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 11100010 => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 10101100 => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 10111000 => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 11110000 => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 10101010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3 = 2 + 1
Description
The length of the longest run of ones in a binary word.
Matching statistic: St001372
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001372: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> 10 => 1 = 0 + 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 1100 => 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1010 => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 110100 => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 110010 => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 101100 => 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 111000 => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 101010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 11010100 => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 11010010 => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 11001100 => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 11011000 => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 11001010 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 10110100 => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 10110010 => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 11100100 => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 11101000 => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 11100010 => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 10101100 => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 10111000 => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 11110000 => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 10101010 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3 = 2 + 1
Description
The length of a longest cyclic run of ones of a binary word. Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1,0]
=> ? = 0 + 1
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [1,1,1,0,1,0,0,0,1,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> 2 = 1 + 1
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St001418
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00072: Permutations binary search tree: left to rightBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
St001418: Dyck paths ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [.,.]
=> [1,0]
=> ? = 0
[1,0,1,0]
=> [2,1] => [[.,.],.]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,2] => [.,[.,.]]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [2,1,3] => [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [.,[[.,.],[[.,.],.]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [.,[.,[[.,.],[.,.]]]]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
Description
Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. The stable Auslander algebra is by definition the stable endomorphism ring of the direct sum of all indecomposable modules.
Mp00028: Dyck paths reverseDyck paths
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
St000485: Permutations ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> [1] => [1] => ? = 0 + 1
[1,0,1,0]
=> [1,0,1,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => 3 = 2 + 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,2,3,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [3,4,1,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => 3 = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 3 = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => 3 = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 4 = 3 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,1,4,2] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [4,5,3,1,2] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [1,4,5,2,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => 3 = 2 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [4,1,5,2,3] => 3 = 2 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,4,1,2,5] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 3 = 2 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 3 = 2 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => 3 = 2 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,1,3,4,2] => 3 = 2 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [1,5,2,4,3] => 3 = 2 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => 3 = 2 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,2,4] => 3 = 2 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [4,5,2,1,3] => 3 = 2 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [1,2,5,3,4] => 3 = 2 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 2 = 1 + 1
Description
The length of the longest cycle of a permutation.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001292The injective dimension of the tensor product of two copies of the dual of the Nakayama algebra associated to a Dyck path. St000451The length of the longest pattern of the form k 1 2. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001624The breadth of a lattice.