searching the database
Your data matches 5 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001200
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
St001200: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [1,2] => [1,1] => [1,0,1,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => [1,0,1,0]
=> 2
([(2,3)],4)
=> [1,3] => [1,1] => [1,0,1,0]
=> 2
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => [1,1,0,0,1,0]
=> 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => [1,0,1,0]
=> 2
([(3,4)],5)
=> [1,4] => [1,1] => [1,0,1,0]
=> 2
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => [1,1,0,0,1,0]
=> 2
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => [1,0,1,0]
=> 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2] => [1,0,1,1,0,0]
=> 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => [1,0,1,0]
=> 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,3] => [1,0,1,1,1,0,0,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => [1,1,0,0,1,0]
=> 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,2] => [1,0,1,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => [1,0,1,0]
=> 2
([(4,5)],6)
=> [1,5] => [1,1] => [1,0,1,0]
=> 2
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => [1,1,0,0,1,0]
=> 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => [1,0,1,0]
=> 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => [1,1,1,0,0,0,1,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => [1,0,1,0,1,0]
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 2
Description
The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001335
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001335: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([(1,2)],3)
=> [1,2] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(2,3)],4)
=> [1,3] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2] => ([(1,2)],3)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(3,4)],5)
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> 0 = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> 0 = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,3] => ([(2,3)],4)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,2] => ([(1,2)],3)
=> 0 = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(4,5)],6)
=> [1,5] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> 0 = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> 0 = 2 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> 0 = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 0 = 2 - 2
Description
The cardinality of a minimal cycle-isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains all cycles.
Matching statistic: St000264
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 73%●distinct values known / distinct values provided: 50%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 50% ●values known / values provided: 73%●distinct values known / distinct values provided: 50%
Values
([(1,2)],3)
=> [1,2] => [1,1] => ([(0,1)],2)
=> ? = 2
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1] => ([(0,1)],2)
=> ? = 2
([(2,3)],4)
=> [1,3] => [1,1] => ([(0,1)],2)
=> ? = 2
([(1,3),(2,3)],4)
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [2,1,1] => [1,2] => ([(1,2)],3)
=> ? = 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1] => ([(0,1)],2)
=> ? = 2
([(3,4)],5)
=> [1,4] => [1,1] => ([(0,1)],2)
=> ? = 2
([(2,4),(3,4)],5)
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> ? = 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> ? = 2
([(1,4),(2,3),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(0,1),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1] => ([(0,1)],2)
=> ? = 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> ? = 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1] => ([(0,1)],2)
=> ? = 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,1,1,1] => [1,3] => ([(2,3)],4)
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,1,1] => [1,2] => ([(1,2)],3)
=> ? = 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1] => ([(0,1)],2)
=> ? = 2
([(4,5)],6)
=> [1,5] => [1,1] => ([(0,1)],2)
=> ? = 2
([(3,5),(4,5)],6)
=> [1,1,4] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 2
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(2,5),(3,4)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 2
([(2,5),(3,4),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(1,2),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1] => ([(0,1)],2)
=> ? = 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,3] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,5),(2,4),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,5),(3,4),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(3,4),(3,5),(4,5)],6)
=> [2,1,3] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> [3,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,2] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,1,1,2] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)
=> [1,2,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,2,1,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,2,1,1,1] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> [2,1,2,1] => [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,1,1,1,1] => [1,4] => ([(3,4)],5)
=> ? = 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [4,2] => [1,1] => ([(0,1)],2)
=> ? = 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,1,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 2
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000456
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Values
([(1,2)],3)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 2 - 2
([(2,3)],4)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 2 - 2
([(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 - 2
([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 2
([(0,1),(2,4),(3,4)],5)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 2 - 2
([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 2 - 2
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 2 - 2
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ? = 2 - 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? = 2 - 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 2 - 2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ? = 2 - 2
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ? = 2 - 2
([(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 3 - 2
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 3 - 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(2,5),(3,4)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 - 2
([(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 2
([(1,2),(3,5),(4,5)],6)
=> ([(1,4),(2,3)],5)
=> ([],3)
=> ? = 2 - 2
([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 2 - 2
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 2
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2)],4)
=> ([],2)
=> ? = 2 - 2
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 3 - 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? = 2 - 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(1,2)],3)
=> ([],2)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1)],2)
=> ([],1)
=> ? = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ? = 3 - 2
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 2 - 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 3 - 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 3 - 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> 1 = 3 - 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 3 - 2
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 3 - 2
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001545
Values
([(1,2)],3)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(2,3)],4)
=> ([],3)
=> ([],1)
=> ? = 2 - 1
([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(3,4)],5)
=> ([],4)
=> ([],1)
=> ? = 2 - 1
([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(1,4),(2,3)],5)
=> ([],3)
=> ([],1)
=> ? = 2 - 1
([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 1
([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ([],1)
=> ? = 2 - 1
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? = 2 - 1
([(4,5)],6)
=> ([],5)
=> ([],1)
=> ? = 2 - 1
([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 2 - 1
([(2,5),(3,5),(4,5)],6)
=> ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? = 3 - 1
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(2,5),(3,4)],6)
=> ([],4)
=> ([],1)
=> ? = 2 - 1
([(2,5),(3,4),(4,5)],6)
=> ([(2,6),(3,5),(4,5),(4,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 1
([(1,2),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(3,4),(3,5),(4,5)],6)
=> ([],4)
=> ([],1)
=> ? = 2 - 1
([(1,5),(2,5),(3,4),(4,5)],6)
=> ([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 1
([(0,1),(2,5),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(2,4),(2,5),(3,4),(3,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? = 2 - 1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],2)
=> ([],1)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],1)
=> ([],1)
=> ? = 3 - 1
([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ([(1,7),(2,6),(3,4),(3,5),(4,6),(5,7)],8)
=> ? = 2 - 1
([(0,1),(2,5),(3,4),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 3 - 1
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([],3)
=> ([],1)
=> ? = 3 - 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? = 2 - 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2 = 3 - 1
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2 = 3 - 1
Description
The second Elser number of a connected graph.
For a connected graph $G$ the $k$-th Elser number is
$$
els_k(G) = (-1)^{|V(G)|+1} \sum_N (-1)^{|E(N)|} |V(N)|^k
$$
where the sum is over all nuclei of $G$, that is, the connected subgraphs of $G$ whose vertex set is a vertex cover of $G$.
It is clear that this number is even. It was shown in [1] that it is non-negative.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!