searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001203
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St001203: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 3
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 3
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 4
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 4
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 5
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 4
Description
We associate to a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n-1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a Dyck path as follows:
In the list $L$ delete the first entry $c_0$ and substract from all other entries $n-1$ and then append the last element 1 (this was suggested by Christian Stump). The result is a Kupisch series of an LNakayama algebra.
Example:
[5,6,6,6,6] goes into [2,2,2,2,1].
Now associate to the CNakayama algebra with the above properties the Dyck path corresponding to the Kupisch series of the LNakayama algebra.
The statistic return the global dimension of the CNakayama algebra divided by 2.
Matching statistic: St000306
Mp00199: Dyck paths —prime Dyck path⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 100%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00032: Dyck paths —inverse zeta map⟶ Dyck paths
St000306: Dyck paths ⟶ ℤResult quality: 72% ●values known / values provided: 72%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 1 = 2 - 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0,1,0]
=> 3 = 4 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1 = 2 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,0,0]
=> 3 = 4 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1 = 2 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> 1 = 2 - 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0]
=> 3 = 4 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> 4 = 5 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,1,0,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> 2 = 3 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,0]
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [1,0,1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> ? = 4 - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> ? = 4 - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> ? = 3 - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,1,0,0,1,0,0]
=> [1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 5 - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> ? = 3 - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> ? = 4 - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> ? = 4 - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,1,1,1,1,0,0,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? = 4 - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,1,1,0,0,0,0]
=> ? = 3 - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,0,1,0,0]
=> ? = 3 - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> ? = 3 - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0,1,0]
=> ? = 3 - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0,1,0]
=> ? = 3 - 1
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 4 - 1
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,1,0,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> ? = 5 - 1
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> ? = 4 - 1
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [1,1,0,1,0,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0,1,0]
=> ? = 4 - 1
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> ? = 4 - 1
[1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,0,1,0,0]
=> ? = 3 - 1
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [1,1,0,1,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,1,1,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0,1,0]
=> ? = 3 - 1
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,0,1,1,0,0,1,0,0]
=> ? = 4 - 1
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,1,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [1,1,1,0,0,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,1,0,0,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> ? = 2 - 1
[1,1,1,0,0,1,1,0,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,0,1,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,1,0,1,0,0,0]
=> ? = 4 - 1
[1,1,1,0,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [1,1,1,0,0,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> ? = 4 - 1
[1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,1,0,0,1,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,1,0,0,1,0,1,0,0,0]
=> ? = 3 - 1
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0,1,0]
=> ? = 3 - 1
[1,1,1,0,1,1,0,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [1,1,1,0,1,0,0,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? = 4 - 1
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0,1,1,0,0]
=> [1,0,1,1,0,1,1,0,0,1,0,1,0,0]
=> ? = 4 - 1
Description
The bounce count of a Dyck path.
For a Dyck path $D$ of length $2n$, this is the number of points $(i,i)$ for $1 \leq i < n$ that are touching points of the [[Mp00099|bounce path]] of $D$.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!