Your data matches 71 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001204: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> 0
[1,1,1,0,0,1,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> 0
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. Associate to this special CNakayama algebra a Dyck path as follows: In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra. The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Mp00222: Dyck paths peaks-to-valleysDyck paths
St001217: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 0
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> 2 = 1 + 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> 1 = 0 + 1
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 2 = 1 + 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 1 = 0 + 1
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> 1 = 0 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00081: Standard tableaux reading word permutationPermutations
St000237: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> [2,4,1,3] => 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> [3,4,1,2] => 0
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> [2,4,6,1,3,5] => 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> [2,5,6,1,3,4] => 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> [3,4,6,1,2,5] => 0
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> [3,5,6,1,2,4] => 0
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> [2,4,6,8,1,3,5,7] => 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> [2,4,7,8,1,3,5,6] => 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> [2,5,6,8,1,3,4,7] => 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> [2,5,7,8,1,3,4,6] => 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> [2,6,7,8,1,3,4,5] => 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> [3,4,6,8,1,2,5,7] => 0
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> [3,4,7,8,1,2,5,6] => 0
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> [3,5,6,8,1,2,4,7] => 0
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> [3,5,7,8,1,2,4,6] => 0
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> [3,6,7,8,1,2,4,5] => 0
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> [4,5,6,8,1,2,3,7] => 0
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> [4,5,7,8,1,2,3,6] => 0
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> [4,6,7,8,1,2,3,5] => 0
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> [5,6,7,8,1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> [2,4,6,8,10,1,3,5,7,9] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> [2,4,6,9,10,1,3,5,7,8] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> [2,4,7,8,10,1,3,5,6,9] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> [2,4,7,9,10,1,3,5,6,8] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> [2,4,8,9,10,1,3,5,6,7] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> [2,5,6,8,10,1,3,4,7,9] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> [2,5,6,9,10,1,3,4,7,8] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> [2,5,7,8,10,1,3,4,6,9] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> [2,5,7,9,10,1,3,4,6,8] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> [2,5,8,9,10,1,3,4,6,7] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> [2,6,7,8,10,1,3,4,5,9] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> [2,6,7,9,10,1,3,4,5,8] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> [2,6,8,9,10,1,3,4,5,7] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> [2,7,8,9,10,1,3,4,5,6] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> [3,4,6,8,10,1,2,5,7,9] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> [3,4,6,9,10,1,2,5,7,8] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> [3,4,7,8,10,1,2,5,6,9] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> [3,4,7,9,10,1,2,5,6,8] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> [3,4,8,9,10,1,2,5,6,7] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> [3,5,6,8,10,1,2,4,7,9] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> [3,5,6,9,10,1,2,4,7,8] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> [3,5,7,8,10,1,2,4,6,9] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> [3,5,7,9,10,1,2,4,6,8] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> [3,5,8,9,10,1,2,4,6,7] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> [3,6,7,8,10,1,2,4,5,9] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> [3,6,7,9,10,1,2,4,5,8] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> [3,6,8,9,10,1,2,4,5,7] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> [3,7,8,9,10,1,2,4,5,6] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> [4,5,6,8,10,1,2,3,7,9] => 0
Description
The number of small exceedances. This is the number of indices $i$ such that $\pi_i=i+1$.
Mp00033: Dyck paths to two-row standard tableauStandard tableaux
Mp00134: Standard tableaux descent wordBinary words
St000297: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [[1,3],[2,4]]
=> 101 => 1
[1,1,0,0]
=> [[1,2],[3,4]]
=> 010 => 0
[1,0,1,0,1,0]
=> [[1,3,5],[2,4,6]]
=> 10101 => 1
[1,0,1,1,0,0]
=> [[1,3,4],[2,5,6]]
=> 10010 => 1
[1,1,0,0,1,0]
=> [[1,2,5],[3,4,6]]
=> 01001 => 0
[1,1,0,1,0,0]
=> [[1,2,4],[3,5,6]]
=> 01010 => 0
[1,1,1,0,0,0]
=> [[1,2,3],[4,5,6]]
=> 00100 => 0
[1,0,1,0,1,0,1,0]
=> [[1,3,5,7],[2,4,6,8]]
=> 1010101 => 1
[1,0,1,0,1,1,0,0]
=> [[1,3,5,6],[2,4,7,8]]
=> 1010010 => 1
[1,0,1,1,0,0,1,0]
=> [[1,3,4,7],[2,5,6,8]]
=> 1001001 => 1
[1,0,1,1,0,1,0,0]
=> [[1,3,4,6],[2,5,7,8]]
=> 1001010 => 1
[1,0,1,1,1,0,0,0]
=> [[1,3,4,5],[2,6,7,8]]
=> 1000100 => 1
[1,1,0,0,1,0,1,0]
=> [[1,2,5,7],[3,4,6,8]]
=> 0100101 => 0
[1,1,0,0,1,1,0,0]
=> [[1,2,5,6],[3,4,7,8]]
=> 0100010 => 0
[1,1,0,1,0,0,1,0]
=> [[1,2,4,7],[3,5,6,8]]
=> 0101001 => 0
[1,1,0,1,0,1,0,0]
=> [[1,2,4,6],[3,5,7,8]]
=> 0101010 => 0
[1,1,0,1,1,0,0,0]
=> [[1,2,4,5],[3,6,7,8]]
=> 0100100 => 0
[1,1,1,0,0,0,1,0]
=> [[1,2,3,7],[4,5,6,8]]
=> 0010001 => 0
[1,1,1,0,0,1,0,0]
=> [[1,2,3,6],[4,5,7,8]]
=> 0010010 => 0
[1,1,1,0,1,0,0,0]
=> [[1,2,3,5],[4,6,7,8]]
=> 0010100 => 0
[1,1,1,1,0,0,0,0]
=> [[1,2,3,4],[5,6,7,8]]
=> 0001000 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [[1,3,5,7,9],[2,4,6,8,10]]
=> 101010101 => 1
[1,0,1,0,1,0,1,1,0,0]
=> [[1,3,5,7,8],[2,4,6,9,10]]
=> 101010010 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [[1,3,5,6,9],[2,4,7,8,10]]
=> 101001001 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [[1,3,5,6,8],[2,4,7,9,10]]
=> 101001010 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [[1,3,5,6,7],[2,4,8,9,10]]
=> 101000100 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [[1,3,4,7,9],[2,5,6,8,10]]
=> 100100101 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [[1,3,4,7,8],[2,5,6,9,10]]
=> 100100010 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [[1,3,4,6,9],[2,5,7,8,10]]
=> 100101001 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [[1,3,4,6,8],[2,5,7,9,10]]
=> 100101010 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [[1,3,4,6,7],[2,5,8,9,10]]
=> 100100100 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [[1,3,4,5,9],[2,6,7,8,10]]
=> 100010001 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [[1,3,4,5,8],[2,6,7,9,10]]
=> 100010010 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [[1,3,4,5,7],[2,6,8,9,10]]
=> 100010100 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [[1,3,4,5,6],[2,7,8,9,10]]
=> 100001000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [[1,2,5,7,9],[3,4,6,8,10]]
=> 010010101 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [[1,2,5,7,8],[3,4,6,9,10]]
=> 010010010 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [[1,2,5,6,9],[3,4,7,8,10]]
=> 010001001 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [[1,2,5,6,8],[3,4,7,9,10]]
=> 010001010 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [[1,2,5,6,7],[3,4,8,9,10]]
=> 010000100 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [[1,2,4,7,9],[3,5,6,8,10]]
=> 010100101 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [[1,2,4,7,8],[3,5,6,9,10]]
=> 010100010 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [[1,2,4,6,9],[3,5,7,8,10]]
=> 010101001 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [[1,2,4,6,8],[3,5,7,9,10]]
=> 010101010 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [[1,2,4,6,7],[3,5,8,9,10]]
=> 010100100 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [[1,2,4,5,9],[3,6,7,8,10]]
=> 010010001 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [[1,2,4,5,8],[3,6,7,9,10]]
=> 010010010 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [[1,2,4,5,7],[3,6,8,9,10]]
=> 010010100 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [[1,2,4,5,6],[3,7,8,9,10]]
=> 010001000 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [[1,2,3,7,9],[4,5,6,8,10]]
=> 001000101 => 0
Description
The number of leading ones in a binary word.
Mp00028: Dyck paths reverseDyck paths
Mp00099: Dyck paths bounce pathDyck paths
St001185: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,1,0,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> 0
Description
The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra.
Mp00093: Dyck paths to binary wordBinary words
Mp00135: Binary words rotate front-to-backBinary words
St000326: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> 1010 => 0101 => 2 = 1 + 1
[1,1,0,0]
=> 1100 => 1001 => 1 = 0 + 1
[1,0,1,0,1,0]
=> 101010 => 010101 => 2 = 1 + 1
[1,0,1,1,0,0]
=> 101100 => 011001 => 2 = 1 + 1
[1,1,0,0,1,0]
=> 110010 => 100101 => 1 = 0 + 1
[1,1,0,1,0,0]
=> 110100 => 101001 => 1 = 0 + 1
[1,1,1,0,0,0]
=> 111000 => 110001 => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> 10101010 => 01010101 => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> 10101100 => 01011001 => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> 10110010 => 01100101 => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> 10110100 => 01101001 => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> 10111000 => 01110001 => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> 11001010 => 10010101 => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> 11001100 => 10011001 => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> 11010010 => 10100101 => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> 11010100 => 10101001 => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> 11011000 => 10110001 => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> 11100010 => 11000101 => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> 11100100 => 11001001 => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> 11101000 => 11010001 => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> 11110000 => 11100001 => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> 1010101010 => 0101010101 => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> 1010101100 => 0101011001 => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> 1010110010 => 0101100101 => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> 1010110100 => 0101101001 => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> 1010111000 => 0101110001 => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> 1011001010 => 0110010101 => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> 1011001100 => 0110011001 => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> 1011010010 => 0110100101 => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> 1011010100 => 0110101001 => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> 1011011000 => 0110110001 => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> 1011100010 => 0111000101 => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> 1011100100 => 0111001001 => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> 1011101000 => 0111010001 => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> 1011110000 => 0111100001 => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 1001010101 => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 1001011001 => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 1001100101 => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 1001101001 => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 1001110001 => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 1010010101 => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 1010011001 => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 1010100101 => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 1010101001 => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 1010110001 => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 1011000101 => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 1011001001 => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 1011010001 => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 1011100001 => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 1100010101 => 1 = 0 + 1
Description
The position of the first one in a binary word after appending a 1 at the end. Regarding the binary word as a subset of $\{1,\dots,n,n+1\}$ that contains $n+1$, this is the minimal element of the set.
Mp00024: Dyck paths to 321-avoiding permutationPermutations
Mp00066: Permutations inversePermutations
St000990: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => 2 = 1 + 1
[1,1,0,0]
=> [1,2] => [1,2] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,1,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [1,3,2] => [1,3,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [2,3,1,4] => [3,1,2,4] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,1,2,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => 1 = 0 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [3,4,1,2] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [3,1,2,4] => [2,3,1,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [1,3,4,2] => [1,4,2,3] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,3,4,2] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [1,2,4,3] => [1,2,4,3] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [2,4,1,3,5] => [3,1,4,2,5] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,4,1,5,3] => [3,1,5,2,4] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,4,5,1,3] => [4,1,5,2,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,5,3,4] => [2,1,4,5,3] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,5,1,3,4] => [3,1,4,5,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [4,1,2,5,3] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [3,1,4,2,5] => [2,4,1,3,5] => 1 = 0 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [3,4,1,2,5] => [3,4,1,2,5] => 1 = 0 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [3,1,4,5,2] => [2,5,1,3,4] => 1 = 0 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [3,4,1,5,2] => [3,5,1,2,4] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [4,5,1,2,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,5,2,4] => [2,4,1,5,3] => 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,5,1,2,4] => [3,4,1,5,2] => 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,1,2,5,4] => [2,3,1,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,4,2,5,3] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,4,5] => [2,3,1,4,5] => 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [4,1,5,2,3] => [2,4,5,1,3] => 1 = 0 + 1
Description
The first ascent of a permutation. For a permutation $\pi$, this is the smallest index such that $\pi(i) < \pi(i+1)$. For the first descent, see [[St000654]].
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00088: Permutations Kreweras complementPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000234: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,2] => [1,2] => 1
[1,1,0,0]
=> [1,2] => [2,1] => [2,1] => 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,3,2] => [1,3,2] => 1
[1,0,1,1,0,0]
=> [2,3,1] => [1,2,3] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [3,1,2] => [3,1,2] => [3,1,2] => 0
[1,1,0,1,0,0]
=> [2,1,3] => [3,2,1] => [3,2,1] => 0
[1,1,1,0,0,0]
=> [1,2,3] => [2,3,1] => [2,3,1] => 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,4,3,2] => [1,4,3,2] => 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,4,2,3] => [1,4,3,2] => 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,3,4,2] => [1,4,3,2] => 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,3,2,4] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,2,3,4] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [4,1,3,2] => [4,1,3,2] => 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [4,1,2,3] => [4,1,3,2] => 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [4,3,1,2] => [4,3,1,2] => 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [4,3,2,1] => [4,3,2,1] => 0
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [4,2,3,1] => [4,2,3,1] => 0
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [3,4,1,2] => [3,4,1,2] => 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [3,4,2,1] => [3,4,2,1] => 0
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [3,2,4,1] => [3,2,4,1] => 0
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [2,3,4,1] => [2,4,3,1] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,5,4,2,3] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,5,3,4,2] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,5,3,2,4] => [1,5,4,3,2] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,5,2,3,4] => [1,5,4,3,2] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,4,5,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,4,5,2,3] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,4,3,5,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,4,3,2,5] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,4,2,3,5] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,3,4,2,5] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,3,2,4,5] => [1,5,4,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [5,1,4,3,2] => [5,1,4,3,2] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [5,1,4,2,3] => [5,1,4,3,2] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [5,1,3,4,2] => [5,1,4,3,2] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [5,1,3,2,4] => [5,1,4,3,2] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [5,1,2,3,4] => [5,1,4,3,2] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [5,4,1,3,2] => [5,4,1,3,2] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [5,4,1,2,3] => [5,4,1,3,2] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [5,4,3,1,2] => [5,4,3,1,2] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [5,4,2,3,1] => [5,4,2,3,1] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [5,3,4,1,2] => [5,3,4,1,2] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [5,3,4,2,1] => [5,3,4,2,1] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [5,3,2,4,1] => [5,3,2,4,1] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [5,2,3,4,1] => [5,2,4,3,1] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [4,5,1,3,2] => [4,5,1,3,2] => 0
Description
The number of global ascents of a permutation. The global ascents are the integers $i$ such that $$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i < k \leq n: \pi(j) < \pi(k)\}.$$ Equivalently, by the pigeonhole principle, $$C(\pi)=\{i\in [n-1] \mid \forall 1 \leq j \leq i: \pi(j) \leq i \}.$$ For $n > 1$ it can also be described as an occurrence of the mesh pattern $$([1,2], \{(0,2),(1,0),(1,1),(2,0),(2,1) \})$$ or equivalently $$([1,2], \{(0,1),(0,2),(1,1),(1,2),(2,0) \}),$$ see [3]. According to [2], this is also the cardinality of the connectivity set of a permutation. The permutation is connected, when the connectivity set is empty. This gives [[oeis:A003319]].
Mp00222: Dyck paths peaks-to-valleysDyck paths
Mp00035: Dyck paths to alternating sign matrixAlternating sign matrices
Mp00002: Alternating sign matrices to left key permutationPermutations
St000352: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> [2,1] => 1
[1,1,0,0]
=> [1,0,1,0]
=> [[1,0],[0,1]]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[1,0,0],[0,1,0]]
=> [3,1,2] => 1
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [[0,1,0],[1,0,0],[0,0,1]]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> [[1,0,0],[0,0,1],[0,1,0]]
=> [1,3,2] => 0
[1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [[1,0,0],[0,1,0],[0,0,1]]
=> [1,2,3] => 0
[1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> [1,3,2] => 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> [4,1,2,3] => 1
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> [3,1,2,4] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> [2,1,3,4] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[1,0,0,0],[0,1,-1,1],[0,0,1,0]]
=> [2,1,4,3] => 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,0,1,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> [1,2,3,4] => 0
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]]
=> [1,3,2,4] => 0
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> [1,2,4,3] => 0
[1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[1,0,-1,1],[0,1,0,0],[0,0,1,0]]
=> [1,4,2,3] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [5,1,2,3,4] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [4,1,2,3,5] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [3,1,2,4,5] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [3,1,2,5,4] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [2,1,3,4,5] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [2,1,4,3,5] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[1,0,0,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [2,1,3,5,4] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [2,1,5,3,4] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,4,2,3,5] => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,3,2,4,5] => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,3,2,5,4] => 0
[1,1,0,1,0,0,1,0,1,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,0,1,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> [1,2,3,4,5] => 0
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,0,1,0,0]
=> [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> [1,2,4,3,5] => 0
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> [1,2,3,5,4] => 0
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,-1,1],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,2,5,3,4] => 0
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> [1,5,2,3,4] => 0
Description
The Elizalde-Pak rank of a permutation. This is the largest $k$ such that $\pi(i) > k$ for all $i\leq k$. According to [1], the length of the longest increasing subsequence in a $321$-avoiding permutation is equidistributed with the rank of a $132$-avoiding permutation.
The following 61 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000390The number of runs of ones in a binary word. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000864The number of circled entries of the shifted recording tableau of a permutation. St000989The number of final rises of a permutation. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001271The competition number of a graph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St000007The number of saliances of the permutation. St000025The number of initial rises of a Dyck path. St000056The decomposition (or block) number of a permutation. St000542The number of left-to-right-minima of a permutation. St000654The first descent of a permutation. St000678The number of up steps after the last double rise of a Dyck path. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000439The position of the first down step of a Dyck path. St001498The normalised height of a Nakayama algebra with magnitude 1. St000392The length of the longest run of ones in a binary word. St000260The radius of a connected graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001552The number of inversions between excedances and fixed points of a permutation. St001372The length of a longest cyclic run of ones of a binary word. St000546The number of global descents of a permutation. St001052The length of the exterior of a permutation. St001096The size of the overlap set of a permutation. St000264The girth of a graph, which is not a tree. St001049The smallest label in the subtree not containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St000877The depth of the binary word interpreted as a path. St000456The monochromatic index of a connected graph. St000221The number of strong fixed points of a permutation. St000461The rix statistic of a permutation. St000648The number of 2-excedences of a permutation. St000873The aix statistic of a permutation. St001948The number of augmented double ascents of a permutation. St000296The length of the symmetric border of a binary word. St000054The first entry of the permutation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000382The first part of an integer composition. St001545The second Elser number of a connected graph. St000455The second largest eigenvalue of a graph if it is integral. St000383The last part of an integer composition. St000259The diameter of a connected graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001937The size of the center of a parking function.