searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001232
Mp00152: Graphs —Laplacian multiplicities⟶ Integer compositions
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00231: Integer compositions —bounce path⟶ Dyck paths
Mp00143: Dyck paths —inverse promotion⟶ Dyck paths
St001232: Dyck paths ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
([],1)
=> [1] => [1,0]
=> [1,0]
=> 0
([],2)
=> [2] => [1,1,0,0]
=> [1,0,1,0]
=> 1
([(0,1)],2)
=> [1,1] => [1,0,1,0]
=> [1,1,0,0]
=> 0
([],3)
=> [3] => [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> 1
([(1,2)],3)
=> [1,2] => [1,0,1,1,0,0]
=> [1,1,1,0,0,0]
=> 0
([(0,2),(1,2)],3)
=> [1,1,1] => [1,0,1,0,1,0]
=> [1,1,0,1,0,0]
=> 2
([(0,1),(0,2),(1,2)],3)
=> [2,1] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 2
([],4)
=> [4] => [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> 1
([(2,3)],4)
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> 0
([(1,3),(2,3)],4)
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 4
([(0,3),(1,3),(2,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,3),(1,2)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
([(1,2),(1,3),(2,3)],4)
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
([(0,2),(0,3),(1,2),(1,3)],4)
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
([],5)
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
([(3,4)],5)
=> [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 0
([(2,4),(3,4)],5)
=> [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 6
([(1,4),(2,4),(3,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(0,4),(1,4),(2,4),(3,4)],5)
=> [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
([(1,4),(2,3)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
([(2,3),(2,4),(3,4)],5)
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
([(1,3),(1,4),(2,3),(2,4)],5)
=> [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 5
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 2
([],6)
=> [6] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> 1
([(4,5)],6)
=> [1,5] => [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> 0
([(3,5),(4,5)],6)
=> [1,1,4] => [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> 8
([(2,5),(3,5),(4,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(1,5),(2,5),(3,5),(4,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
([(2,5),(3,4)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
([(3,4),(3,5),(4,5)],6)
=> [2,4] => [1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> 5
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
([(2,4),(2,5),(3,4),(3,5)],6)
=> [1,2,3] => [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> 6
([(0,5),(1,5),(2,4),(3,4)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 7
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 7
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,3,1] => [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 6
([(0,5),(1,4),(2,3)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 7
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> [1,3,2] => [1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> 4
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 7
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [3,3] => [1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,1,0,0,0,0]
=> 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> [2,2,2] => [1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,0,1,1,1,0,0,1,1,0,0,0]
=> 7
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)
=> [1,4,1] => [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> 2
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> [1,1,3,1] => [1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> 8
Description
The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!