searching the database
Your data matches 157 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001261
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001261: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001261: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 1
[1,2] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[2,1] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,2,3] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,3,2] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1,3] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 2
[3,1,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,2,3,4] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,2,4,3] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[1,3,2,4] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[1,3,4,2] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[1,4,3,2] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,1,3,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[2,1,4,3] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[2,3,1,4] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[3,1,2,4] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[3,1,4,2] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[3,2,1,4] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[3,2,4,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[3,4,1,2] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[3,4,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[4,2,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[4,2,3,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[4,3,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 3
[4,3,2,1] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[4,3,2,1,5] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 3
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[5,4,3,2,1,6] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 3
[2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 3
[6,5,4,3,2,1,7] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 3
Description
The Castelnuovo-Mumford regularity of a graph.
Matching statistic: St001393
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001393: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001393: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1] => [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[1,3,2] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[2,1,3] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[3,1,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[1,2,3,4] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,2,4,3] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[1,3,2,4] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[1,3,4,2] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[1,4,3,2] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[2,1,3,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[2,1,4,3] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,3,1,4] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,1,2,4] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,1,4,2] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[3,2,1,4] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1 = 2 - 1
[3,2,4,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[3,4,1,2] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[3,4,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> 1 = 2 - 1
[4,2,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[4,2,3,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[4,3,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> 2 = 3 - 1
[4,3,2,1] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> 2 = 3 - 1
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
[4,3,2,1,5] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 2 = 3 - 1
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 3 - 1
[5,4,3,2,1,6] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)
=> 2 = 3 - 1
[2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 3 - 1
[6,5,4,3,2,1,7] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 2 = 3 - 1
Description
The induced matching number of a graph.
An induced matching of a graph is a set of independent edges which is an induced subgraph. This statistic records the maximal number of edges in an induced matching.
Matching statistic: St001517
(load all 204 compositions to match this statistic)
(load all 204 compositions to match this statistic)
St001517: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1] => 0 = 1 - 1
[1,2] => 1 = 2 - 1
[2,1] => 1 = 2 - 1
[1,2,3] => 1 = 2 - 1
[1,3,2] => 1 = 2 - 1
[2,1,3] => 1 = 2 - 1
[2,3,1] => 1 = 2 - 1
[3,1,2] => 1 = 2 - 1
[3,2,1] => 1 = 2 - 1
[1,2,3,4] => 2 = 3 - 1
[1,2,4,3] => 2 = 3 - 1
[1,3,2,4] => 2 = 3 - 1
[1,3,4,2] => 2 = 3 - 1
[1,4,3,2] => 1 = 2 - 1
[2,1,3,4] => 2 = 3 - 1
[2,1,4,3] => 2 = 3 - 1
[2,3,1,4] => 2 = 3 - 1
[2,3,4,1] => 1 = 2 - 1
[2,4,1,3] => 2 = 3 - 1
[2,4,3,1] => 2 = 3 - 1
[3,1,2,4] => 2 = 3 - 1
[3,1,4,2] => 2 = 3 - 1
[3,2,1,4] => 1 = 2 - 1
[3,2,4,1] => 2 = 3 - 1
[3,4,1,2] => 2 = 3 - 1
[3,4,2,1] => 2 = 3 - 1
[4,1,2,3] => 1 = 2 - 1
[4,2,1,3] => 2 = 3 - 1
[4,2,3,1] => 2 = 3 - 1
[4,3,1,2] => 2 = 3 - 1
[4,3,2,1] => 2 = 3 - 1
[2,3,4,5,1] => 2 = 3 - 1
[4,3,2,1,5] => 2 = 3 - 1
[2,3,4,5,6,1] => 2 = 3 - 1
[5,4,3,2,1,6] => 2 = 3 - 1
[2,3,4,5,6,7,1] => ? = 3 - 1
[6,5,4,3,2,1,7] => ? = 3 - 1
Description
The length of a longest pair of twins in a permutation.
A pair of twins in a permutation is a pair of two disjoint subsequences which are order isomorphic.
Matching statistic: St001667
(load all 176 compositions to match this statistic)
(load all 176 compositions to match this statistic)
St001667: Permutations ⟶ ℤResult quality: 95% ●values known / values provided: 95%●distinct values known / distinct values provided: 100%
Values
[1] => 0 = 1 - 1
[1,2] => 1 = 2 - 1
[2,1] => 1 = 2 - 1
[1,2,3] => 1 = 2 - 1
[1,3,2] => 1 = 2 - 1
[2,1,3] => 1 = 2 - 1
[2,3,1] => 1 = 2 - 1
[3,1,2] => 1 = 2 - 1
[3,2,1] => 1 = 2 - 1
[1,2,3,4] => 2 = 3 - 1
[1,2,4,3] => 2 = 3 - 1
[1,3,2,4] => 2 = 3 - 1
[1,3,4,2] => 2 = 3 - 1
[1,4,3,2] => 1 = 2 - 1
[2,1,3,4] => 2 = 3 - 1
[2,1,4,3] => 2 = 3 - 1
[2,3,1,4] => 2 = 3 - 1
[2,3,4,1] => 1 = 2 - 1
[2,4,1,3] => 2 = 3 - 1
[2,4,3,1] => 2 = 3 - 1
[3,1,2,4] => 2 = 3 - 1
[3,1,4,2] => 2 = 3 - 1
[3,2,1,4] => 1 = 2 - 1
[3,2,4,1] => 2 = 3 - 1
[3,4,1,2] => 2 = 3 - 1
[3,4,2,1] => 2 = 3 - 1
[4,1,2,3] => 1 = 2 - 1
[4,2,1,3] => 2 = 3 - 1
[4,2,3,1] => 2 = 3 - 1
[4,3,1,2] => 2 = 3 - 1
[4,3,2,1] => 2 = 3 - 1
[2,3,4,5,1] => 2 = 3 - 1
[4,3,2,1,5] => 2 = 3 - 1
[2,3,4,5,6,1] => 2 = 3 - 1
[5,4,3,2,1,6] => 2 = 3 - 1
[2,3,4,5,6,7,1] => ? = 3 - 1
[6,5,4,3,2,1,7] => ? = 3 - 1
Description
The maximal size of a pair of weak twins for a permutation.
A pair of weak twins in a permutation is a pair of two disjoint subsequences of the same length with the same descent pattern. More formally, a pair of weak twins of size $k$ for a permutation $\pi$ of length $n$ are two disjoint lists $1 \leq i_1 < \dots < i_k \leq n$ and $1 \leq j_1 < \dots < j_k \leq n$ such that $\pi(i_a) < \pi(i_{a+1})$ if and only if $\pi(j_a) < \pi(j_{a+1})$ for all $1 \leq a < k$.
Matching statistic: St001095
Mp00064: Permutations —reverse⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 67% ●values known / values provided: 76%●distinct values known / distinct values provided: 67%
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
St001095: Posets ⟶ ℤResult quality: 67% ●values known / values provided: 76%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1 - 2
[1,2] => [2,1] => [1,2] => ([(0,1)],2)
=> 0 = 2 - 2
[2,1] => [1,2] => [2,1] => ([(0,1)],2)
=> 0 = 2 - 2
[1,2,3] => [3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,3,2] => [2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[2,1,3] => [3,1,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[2,3,1] => [1,3,2] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[3,1,2] => [2,1,3] => [3,2,1] => ([(0,2),(2,1)],3)
=> 0 = 2 - 2
[3,2,1] => [1,2,3] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0 = 2 - 2
[1,2,3,4] => [4,3,2,1] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[1,2,4,3] => [3,4,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[1,3,2,4] => [4,2,3,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[1,3,4,2] => [2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[1,4,3,2] => [2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[2,1,3,4] => [4,3,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[2,1,4,3] => [3,4,1,2] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[2,3,1,4] => [4,1,3,2] => [3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 - 2
[2,3,4,1] => [1,4,3,2] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 2 - 2
[2,4,1,3] => [3,1,4,2] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[2,4,3,1] => [1,3,4,2] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[3,1,2,4] => [4,2,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[3,1,4,2] => [2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[3,2,1,4] => [4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 0 = 2 - 2
[3,2,4,1] => [1,4,2,3] => [2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 - 2
[3,4,1,2] => [2,1,4,3] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[3,4,2,1] => [1,2,4,3] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[4,1,2,3] => [3,2,1,4] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 0 = 2 - 2
[4,2,1,3] => [3,1,2,4] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[4,2,3,1] => [1,3,2,4] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[4,3,1,2] => [2,1,3,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 1 = 3 - 2
[4,3,2,1] => [1,2,3,4] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1 = 3 - 2
[2,3,4,5,1] => [1,5,4,3,2] => [2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 3 - 2
[4,3,2,1,5] => [5,1,2,3,4] => [3,4,5,1,2] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 3 - 2
[2,3,4,5,6,1] => [1,6,5,4,3,2] => [2,1,6,5,4,3] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 3 - 2
[5,4,3,2,1,6] => [6,1,2,3,4,5] => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,7),(2,9),(2,11),(3,2),(3,10),(4,3),(4,6),(5,1),(5,6),(6,7),(6,10),(7,11),(9,8),(10,9),(10,11),(11,8)],12)
=> ? = 3 - 2
[2,3,4,5,6,7,1] => [1,7,6,5,4,3,2] => [2,1,7,6,5,4,3] => ([(0,5),(0,6),(1,11),(2,3),(2,13),(3,4),(3,10),(4,9),(4,14),(5,1),(5,12),(6,2),(6,12),(7,14),(9,8),(10,9),(10,14),(11,7),(12,11),(12,13),(13,7),(13,10),(14,8)],15)
=> ? = 3 - 2
[6,5,4,3,2,1,7] => [7,1,2,3,4,5,6] => [3,4,5,6,7,1,2] => ([(0,5),(0,6),(1,11),(2,3),(2,13),(3,4),(3,10),(4,9),(4,14),(5,1),(5,12),(6,2),(6,12),(7,14),(9,8),(10,9),(10,14),(11,7),(12,11),(12,13),(13,7),(13,10),(14,8)],15)
=> ? = 3 - 2
Description
The number of non-isomorphic posets with precisely one further covering relation.
Matching statistic: St000455
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00209: Permutations —pattern poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 67%
Mp00209: Permutations —pattern poset⟶ Posets
Mp00198: Posets —incomparability graph⟶ Graphs
St000455: Graphs ⟶ ℤResult quality: 43% ●values known / values provided: 43%●distinct values known / distinct values provided: 67%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 1 - 2
[1,2] => [2,1] => ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
[2,1] => [1,2] => ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
[1,2,3] => [2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[1,3,2] => [2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[2,1,3] => [3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 2
[2,3,1] => [1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> ? = 2 - 2
[3,1,2] => [3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[3,2,1] => [1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 0 = 2 - 2
[1,2,3,4] => [2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[1,2,4,3] => [2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[1,3,2,4] => [2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[1,3,4,2] => [2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[1,4,3,2] => [2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 0 = 2 - 2
[2,1,3,4] => [3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[2,1,4,3] => [3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[2,3,1,4] => [4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[2,3,4,1] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 2
[2,4,1,3] => [4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[2,4,3,1] => [1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[3,1,2,4] => [3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[3,1,4,2] => [3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[3,2,1,4] => [4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ? = 2 - 2
[3,2,4,1] => [1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[3,4,1,2] => [4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[3,4,2,1] => [1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[4,1,2,3] => [3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 0 = 2 - 2
[4,2,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[4,2,3,1] => [1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[4,3,1,2] => [4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 1 = 3 - 2
[4,3,2,1] => [1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ? = 3 - 2
[2,3,4,5,1] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 3 - 2
[4,3,2,1,5] => [5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ? = 3 - 2
[2,3,4,5,6,1] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 3 - 2
[5,4,3,2,1,6] => [6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ? = 3 - 2
[2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 3 - 2
[6,5,4,3,2,1,7] => [7,6,5,4,3,2,1] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([],7)
=> ? = 3 - 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
Matching statistic: St001118
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],0)
=> ([],0)
=> ? = 1 - 2
[1,2] => ([],2)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
[2,1] => ([(0,1)],2)
=> ([],1)
=> ([],1)
=> ? = 2 - 2
[1,2,3] => ([],3)
=> ([],0)
=> ([],0)
=> ? = 2 - 2
[1,3,2] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 2 - 2
[2,1,3] => ([(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 2 - 2
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ([],2)
=> ? = 2 - 2
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
[1,2,3,4] => ([],4)
=> ([],0)
=> ([],0)
=> ? = 3 - 2
[1,2,4,3] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 3 - 2
[1,3,2,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 3 - 2
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 2
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
[2,1,3,4] => ([(2,3)],4)
=> ([],1)
=> ([],1)
=> ? = 3 - 2
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 3 - 2
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 2
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 3 - 2
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 3 - 2
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ([],2)
=> ? = 3 - 2
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ([(1,2)],3)
=> 1 = 3 - 2
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 3 - 2
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,3),(1,2)],4)
=> 1 = 3 - 2
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 3 - 2
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> ([],3)
=> ? = 2 - 2
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1 = 3 - 2
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 3 - 2
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,3)],5)
=> 1 = 3 - 2
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 3 - 2
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],4)
=> ? = 3 - 2
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,5),(1,4),(2,3)],6)
=> 1 = 3 - 2
[2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],5)
=> ? = 3 - 2
[5,4,3,2,1,6] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(4,5),(4,7),(4,9),(5,6),(5,8),(6,7),(6,8),(7,9),(8,9)],10)
=> ([(0,7),(0,8),(0,9),(1,4),(1,6),(1,9),(2,3),(2,6),(2,8),(3,5),(3,9),(4,5),(4,8),(5,7),(6,7)],10)
=> ? = 3 - 2
[2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([],6)
=> ? = 3 - 2
[6,5,4,3,2,1,7] => ([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ?
=> ?
=> ? = 3 - 2
Description
The acyclic chromatic index of a graph.
An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest.
The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Matching statistic: St001812
(load all 6 compositions to match this statistic)
(load all 6 compositions to match this statistic)
Values
[1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 1 = 2 - 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 3 - 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 - 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 - 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 - 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 - 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 - 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 - 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(0,6),(0,7),(1,5),(1,6),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8)
=> ? = 3 - 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 - 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)
=> ? = 3 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 - 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 2 - 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7)
=> ? = 3 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)
=> ? = 3 - 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 2 = 3 - 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 - 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,3),(0,7),(1,2),(1,4),(2,5),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 3 - 1
[2,3,4,5,6,1] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 3 - 1
[5,4,3,2,1,6] => ([(0,2),(0,5),(1,7),(2,6),(3,4),(3,9),(4,1),(4,8),(5,3),(5,6),(6,9),(8,7),(9,8)],10)
=> ([(0,3),(0,7),(1,2),(1,6),(2,8),(3,9),(4,5),(4,8),(4,9),(5,6),(5,7),(6,8),(7,9)],10)
=> ? = 3 - 1
[2,3,4,5,6,7,1] => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? = 3 - 1
[6,5,4,3,2,1,7] => ([(0,2),(0,6),(1,8),(2,7),(3,5),(3,9),(4,3),(4,11),(5,1),(5,10),(6,4),(6,7),(7,11),(9,10),(10,8),(11,9)],12)
=> ([(0,3),(0,11),(1,2),(1,8),(2,9),(3,10),(4,5),(4,6),(4,8),(5,7),(5,9),(6,7),(6,10),(7,11),(8,9),(10,11)],12)
=> ? = 3 - 1
Description
The biclique partition number of a graph.
The biclique partition number of a graph is the minimum number of pairwise edge disjoint complete bipartite subgraphs so that each edge belongs to exactly one of them. A theorem of Graham and Pollak [1] asserts that the complete graph $K_n$ has biclique partition number $n - 1$.
Matching statistic: St000264
(load all 42 compositions to match this statistic)
(load all 42 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 33%
Mp00236: Permutations —Clarke-Steingrimsson-Zeng inverse⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000264: Graphs ⟶ ℤResult quality: 30% ●values known / values provided: 30%●distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1] => ([],1)
=> ? = 1
[1,2] => [1,2] => [1,2] => ([],2)
=> ? = 2
[2,1] => [2,1] => [2,1] => ([(0,1)],2)
=> ? = 2
[1,2,3] => [1,2,3] => [1,2,3] => ([],3)
=> ? = 2
[1,3,2] => [1,3,2] => [1,3,2] => ([(1,2)],3)
=> ? = 2
[2,1,3] => [2,1,3] => [2,1,3] => ([(1,2)],3)
=> ? = 2
[2,3,1] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2
[3,1,2] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2
[3,2,1] => [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> ? = 2
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? = 3
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> ? = 3
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> ? = 3
[1,3,4,2] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 3
[1,4,3,2] => [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? = 2
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> ? = 3
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? = 3
[2,3,1,4] => [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 3
[2,3,4,1] => [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[2,4,1,3] => [3,4,1,2] => [4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,4,3,1] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,1,2,4] => [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 3
[3,1,4,2] => [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 3
[3,2,1,4] => [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> ? = 2
[3,2,4,1] => [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 3
[3,4,1,2] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[3,4,2,1] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,1,2,3] => [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 2
[4,2,1,3] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,2,3,1] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,1,2] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[4,3,2,1] => [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
[2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ? = 3
[4,3,2,1,5] => [4,3,2,1,5] => [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[2,3,4,5,6,1] => [6,2,3,4,5,1] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ? = 3
[5,4,3,2,1,6] => [5,4,3,2,1,6] => [3,4,2,5,1,6] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[2,3,4,5,6,7,1] => [7,2,3,4,5,6,1] => [2,3,4,5,6,7,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ? = 3
[6,5,4,3,2,1,7] => [6,5,4,3,2,1,7] => [4,3,5,2,6,1,7] => ([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3
Description
The girth of a graph, which is not a tree.
This is the length of the shortest cycle in the graph.
Matching statistic: St000771
Values
[1] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[2,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[1,2,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> 2
[1,3,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,1,3] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[2,3,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[3,1,2] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)
=> 2
[3,2,1] => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7)
=> 2
[1,2,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,7),(0,8),(1,6),(1,10),(2,5),(2,10),(3,5),(3,9),(3,10),(4,6),(4,9),(4,10),(5,7),(6,8),(7,9),(8,9)],11)
=> ? = 3
[1,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? = 3
[1,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,7),(1,8),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8)],9)
=> ? = 3
[1,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[1,4,3,2] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? = 2
[2,1,3,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? = 3
[2,1,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? = 3
[2,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[2,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? = 2
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[3,1,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)
=> 3
[3,2,1,4] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? = 2
[3,2,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[3,4,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,7),(6,7)],8)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6)],8)
=> ? = 3
[3,4,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? = 3
[4,1,2,3] => ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,7),(2,6),(3,5),(4,5),(4,6),(5,8),(6,8),(8,7)],9)
=> ([(0,1),(0,8),(1,6),(2,5),(2,8),(3,4),(3,8),(4,6),(4,7),(5,6),(5,7),(7,8)],9)
=> ? = 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8)
=> ([(0,1),(0,7),(1,6),(2,5),(2,7),(3,5),(3,7),(4,6),(4,7),(5,6)],8)
=> ? = 3
[4,2,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,7),(4,6),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(0,7),(0,8),(1,7),(1,8),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(5,8),(6,8)],9)
=> ? = 3
[4,3,1,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(4,7),(5,8),(6,7),(7,8)],9)
=> ([(0,4),(0,8),(1,4),(1,8),(2,5),(2,8),(3,5),(3,6),(4,6),(5,7),(6,7),(7,8)],9)
=> ? = 3
[4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,1),(0,2),(0,3),(0,4),(1,9),(2,8),(3,8),(3,10),(4,9),(4,10),(6,5),(7,5),(8,6),(9,7),(10,6),(10,7)],11)
=> ([(0,7),(0,8),(1,6),(1,10),(2,5),(2,10),(3,5),(3,9),(3,10),(4,6),(4,9),(4,10),(5,7),(6,8),(7,9),(8,9)],11)
=> ? = 3
[2,3,4,5,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,10),(0,12),(1,9),(1,12),(2,3),(2,4),(3,12),(4,5),(4,6),(5,9),(5,11),(6,10),(6,11),(7,9),(7,11),(7,12),(8,10),(8,11),(8,12)],13)
=> ? = 3
[4,3,2,1,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,11),(2,10),(3,6),(4,10),(4,12),(5,11),(5,12),(7,9),(8,9),(9,6),(10,7),(11,8),(12,7),(12,8)],13)
=> ([(0,10),(0,12),(1,9),(1,12),(2,3),(2,4),(3,12),(4,5),(4,6),(5,9),(5,11),(6,10),(6,11),(7,9),(7,11),(7,12),(8,10),(8,11),(8,12)],13)
=> ? = 3
[2,3,4,5,6,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ?
=> ? = 3
[5,4,3,2,1,6] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,14),(2,13),(3,7),(4,13),(4,16),(5,14),(5,17),(6,16),(6,17),(8,12),(9,12),(10,8),(11,9),(12,7),(13,10),(14,11),(15,8),(15,9),(16,10),(16,15),(17,11),(17,15)],18)
=> ?
=> ? = 3
[2,3,4,5,6,7,1] => ?
=> ?
=> ?
=> ? = 3
[6,5,4,3,2,1,7] => ?
=> ?
=> ?
=> ? = 3
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$
\left(\begin{array}{rrrr}
4 & -1 & -2 & -1 \\
-1 & 4 & -1 & -2 \\
-2 & -1 & 4 & -1 \\
-1 & -2 & -1 & 4
\end{array}\right).
$$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The following 147 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000774The maximal multiplicity of a Laplacian eigenvalue in a graph. St001624The breadth of a lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001890The maximum magnitude of the Möbius function of a poset. St000092The number of outer peaks of a permutation. St000099The number of valleys of a permutation, including the boundary. St000260The radius of a connected graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000537The cutwidth of a graph. St000633The size of the automorphism group of a poset. St000640The rank of the largest boolean interval in a poset. St000778The metric dimension of a graph. St000846The maximal number of elements covering an element of a poset. St000903The number of different parts of an integer composition. St001235The global dimension of the corresponding Comp-Nakayama algebra. St001270The bandwidth of a graph. St001399The distinguishing number of a poset. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001621The number of atoms of a lattice. St001644The dimension of a graph. St001724The 2-packing differential of a graph. St001741The largest integer such that all patterns of this size are contained in the permutation. St001962The proper pathwidth of a graph. St000023The number of inner peaks of a permutation. St000171The degree of the graph. St000172The Grundy number of a graph. St000353The number of inner valleys of a permutation. St000601The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal, (2,3) are consecutive in a block. St000638The number of up-down runs of a permutation. St000671The maximin edge-connectivity for choosing a subgraph. St000717The number of ordinal summands of a poset. St000872The number of very big descents of a permutation. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001112The 3-weak dynamic number of a graph. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001353The number of prime nodes in the modular decomposition of a graph. St001638The book thickness of a graph. St001642The Prague dimension of a graph. St001729The number of visible descents of a permutation. St001963The tree-depth of a graph. St001110The 3-dynamic chromatic number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001746The coalition number of a graph. St001805The maximal overlap of a cylindrical tableau associated with a semistandard tableau. St001926Sparre Andersen's position of the maximum of a signed permutation. St000990The first ascent of a permutation. St000570The Edelman-Greene number of a permutation. St000654The first descent of a permutation. St000873The aix statistic of a permutation. St001060The distinguishing index of a graph. St001859The number of factors of the Stanley symmetric function associated with a permutation. St000102The charge of a semistandard tableau. St000279The size of the preimage of the map 'cycle-as-one-line notation' from Permutations to Permutations. St000516The number of stretching pairs of a permutation. St000623The number of occurrences of the pattern 52341 in a permutation. St000803The number of occurrences of the vincular pattern |132 in a permutation. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001651The Frankl number of a lattice. St000454The largest eigenvalue of a graph if it is integral. St000741The Colin de Verdière graph invariant. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000284The Plancherel distribution on integer partitions. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000782The indicator function of whether a given perfect matching is an L & P matching. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001409The maximal entry of a semistandard tableau. St001408The number of maximal entries in a semistandard tableau. St001410The minimal entry of a semistandard tableau. St000219The number of occurrences of the pattern 231 in a permutation. St001875The number of simple modules with projective dimension at most 1. St001568The smallest positive integer that does not appear twice in the partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000739The first entry in the last row of a semistandard tableau. St001401The number of distinct entries in a semistandard tableau. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000101The cocharge of a semistandard tableau. St000080The rank of the poset. St000736The last entry in the first row of a semistandard tableau. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001569The maximal modular displacement of a permutation. St001570The minimal number of edges to add to make a graph Hamiltonian. St001623The number of doubly irreducible elements of a lattice. St001686The order of promotion on a Gelfand-Tsetlin pattern. St001742The difference of the maximal and the minimal degree in a graph. St001117The game chromatic index of a graph. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001314The number of tilting modules of arbitrary projective dimension that have no simple modules as a direct summand in the corresponding Nakayama algebra. St001330The hat guessing number of a graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001556The number of inversions of the third entry of a permutation. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001645The pebbling number of a connected graph. St001649The length of a longest trail in a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001820The size of the image of the pop stack sorting operator. St001856The number of edges in the reduced word graph of a permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001948The number of augmented double ascents of a permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St001964The interval resolution global dimension of a poset. St000937The number of positive values of the symmetric group character corresponding to the partition. St001002Number of indecomposable modules with projective and injective dimension at most 1 in the Nakayama algebra corresponding to the Dyck path. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001626The number of maximal proper sublattices of a lattice. St001720The minimal length of a chain of small intervals in a lattice.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!