Your data matches 65 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001278: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 1
[1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> 2
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> 3
[1,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 2
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> 2
Description
The number of indecomposable modules that are fixed by $\tau \Omega^1$ composed with its inverse in the corresponding Nakayama algebra. The statistic is also equal to the number of non-projective torsionless indecomposable modules in the corresponding Nakayama algebra. See theorem 5.8. in the reference for a motivation.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000018: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
Description
The number of inversions of a permutation. This equals the minimal number of simple transpositions $(i,i+1)$ needed to write $\pi$. Thus, it is also the Coxeter length of $\pi$.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St000029: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
Description
The depth of a permutation. This is given by $$\operatorname{dp}(\sigma) = \sum_{\sigma_i>i} (\sigma_i-i) = |\{ i \leq j : \sigma_i > j\}|.$$ The depth is half of the total displacement [4], Problem 5.1.1.28, or Spearman’s disarray [3] $\sum_i |\sigma_i-i|$. Permutations with depth at most $1$ are called ''almost-increasing'' in [5].
Mp00120: Dyck paths Lalanne-Kreweras involutionDyck paths
St000394: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,0]
=> 0
[1,0,1,0]
=> [1,1,0,0]
=> 1
[1,1,0,0]
=> [1,0,1,0]
=> 0
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,0,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
Description
The sum of the heights of the peaks of a Dyck path minus the number of peaks.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
St001579: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 0
[1,0,1,0]
=> [2,1] => 1
[1,1,0,0]
=> [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => 2
Description
The number of cyclically simple transpositions decreasing the number of cyclic descents needed to sort a permutation. This is for a permutation $\sigma$ of length $n$ and the set $T = \{ (1,2), \dots, (n-1,n), (1,n) \}$ given by $$\min\{ k \mid \sigma = t_1\dots t_k \text{ for } t_i \in T \text{ such that } t_1\dots t_j \text{ has more cyclic descents than } t_1\dots t_{j-1} \text{ for all } j\}.$$
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00175: Permutations inverse Foata bijectionPermutations
St000004: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [2,3,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [2,3,4,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [2,3,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,4,1,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,4,1,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [1,3,4,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [3,1,4,2] => 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [1,3,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,1,2,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,2,4,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [2,3,5,1,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,2,3,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,4,5,1,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,4,1,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,5,2,1,3] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,5,1,3,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [5,2,1,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [2,1,5,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [3,4,5,1,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [3,4,1,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [3,5,1,2,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [1,3,4,5,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [1,3,4,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,1,4,5,2] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,4,1,5,2] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,1,4,2,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [1,3,5,2,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,1,5,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [1,5,3,2,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => 2
Description
The major index of a permutation. This is the sum of the positions of its descents, $$\operatorname{maj}(\sigma) = \sum_{\sigma(i) > \sigma(i+1)} i.$$ Its generating function is $[n]_q! = [1]_q \cdot [2]_q \dots [n]_q$ for $[k]_q = 1 + q + q^2 + \dots q^{k-1}$. A statistic equidistributed with the major index is called '''Mahonian statistic'''.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000030: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [2,1] => [2,1] => 1
[1,1,0,0]
=> [1,2] => [1,2] => 0
[1,0,1,0,1,0]
=> [2,3,1] => [3,2,1] => 2
[1,0,1,1,0,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,0,1,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,0,1,0,0]
=> [3,1,2] => [3,1,2] => 2
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [4,3,2,1] => 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,1,4] => 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,1,4,3] => 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [4,2,1,3] => 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [1,4,3,2] => 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [1,3,2,4] => 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [4,3,1,2] => 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [4,1,3,2] => 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1,2,4] => 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [1,2,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [1,4,2,3] => 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [4,1,2,3] => 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [5,4,3,2,1] => 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,1,5] => 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [5,3,2,1,4] => 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [5,4,2,1,3] => 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [5,2,1,4,3] => 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,1,3,5] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [2,1,5,3,4] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [5,2,1,3,4] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [1,5,3,2,4] => 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [5,4,3,1,2] => 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [4,3,1,2,5] => 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [5,4,1,3,2] => 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [5,1,4,3,2] => 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [4,1,3,2,5] => 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,1,2,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [5,3,1,2,4] => 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [5,1,3,2,4] => 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,1,2,4,5] => 2
Description
The sum of the descent differences of a permutations. This statistic is given by $$\pi \mapsto \sum_{i\in\operatorname{Des}(\pi)} (\pi_i-\pi_{i+1}).$$ See [[St000111]] and [[St000154]] for the sum of the descent tops and the descent bottoms, respectively. This statistic was studied in [1] and [2] where is was called the ''drop'' of a permutation.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00137: Dyck paths to symmetric ASMAlternating sign matrices
St000065: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1,1,0,0]
=> [[0,1],[1,0]]
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[0,1,0],[1,-1,1],[0,1,0]]
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[0,0,1],[0,1,0],[1,0,0]]
=> 0
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]]
=> 2
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[0,1,0,0],[1,-1,0,1],[0,0,1,0],[0,1,0,0]]
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[0,0,1,0],[0,1,0,0],[1,0,-1,1],[0,0,1,0]]
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[0,0,1,0],[0,1,-1,1],[1,-1,1,0],[0,1,0,0]]
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 2
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 3
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0],[1,-1,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0],[0,1,0,0,0],[1,0,-1,0,1],[0,0,0,1,0],[0,0,1,0,0]]
=> 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,-1,1],[0,0,0,1,0]]
=> 3
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,1,0],[1,-1,1,-1,1],[0,1,-1,1,0],[0,0,1,0,0]]
=> 4
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0],[0,1,-1,0,1],[1,-1,0,1,0],[0,0,1,0,0],[0,1,0,0,0]]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,-1,1],[0,0,0,1,0]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[0,0,0,1,0],[0,0,1,0,0],[0,1,0,-1,1],[1,0,-1,1,0],[0,0,1,0,0]]
=> 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[0,0,0,1,0],[0,0,1,-1,1],[0,1,-1,1,0],[1,-1,1,0,0],[0,1,0,0,0]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,1,0,0],[0,0,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [[0,1,0,0,0,0],[1,-1,0,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,1,0,0],[0,0,1,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,1,0],[0,0,0,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,0,0,0,0],[1,0,-1,0,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,0,0,0],[0,1,0,-1,0,1],[0,0,0,0,1,0],[0,0,0,1,0,0]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,-1,1],[0,0,0,0,1,0]]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,1,0],[0,1,-1,1,-1,1],[0,0,1,-1,1,0],[0,0,0,1,0,0]]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,1,0,0],[1,-1,1,-1,0,1],[0,1,-1,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0]]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,-1,1],[0,0,0,0,1,0]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,0,0],[0,0,1,0,-1,1],[0,1,0,-1,1,0],[0,0,0,1,0,0]]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,1,0],[1,-1,0,1,-1,1],[0,0,1,-1,1,0],[0,1,-1,1,0,0],[0,0,1,0,0,0]]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [[0,0,1,0,0,0],[0,1,-1,0,0,1],[1,-1,0,0,1,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0]]
=> 2
Description
The number of entries equal to -1 in an alternating sign matrix. The number of nonzero entries, [[St000890]] is twice this number plus the dimension of the matrix.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00063: Permutations to alternating sign matrixAlternating sign matrices
St000067: Alternating sign matrices ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [[1]]
=> 0
[1,0,1,0]
=> [2,1] => [[0,1],[1,0]]
=> 1
[1,1,0,0]
=> [1,2] => [[1,0],[0,1]]
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => [[0,0,1],[1,0,0],[0,1,0]]
=> 2
[1,0,1,1,0,0]
=> [2,1,3] => [[0,1,0],[1,0,0],[0,0,1]]
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => [[1,0,0],[0,0,1],[0,1,0]]
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => [[0,1,0],[0,0,1],[1,0,0]]
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => [[1,0,0],[0,1,0],[0,0,1]]
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [[0,0,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [[0,0,1,0],[1,0,0,0],[0,1,0,0],[0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]]
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [[0,0,1,0],[1,0,0,0],[0,0,0,1],[0,1,0,0]]
=> 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [[1,0,0,0],[0,0,0,1],[0,1,0,0],[0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [[0,1,0,0],[0,0,0,1],[1,0,0,0],[0,0,1,0]]
=> 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [[0,0,1,0],[0,0,0,1],[1,0,0,0],[0,1,0,0]]
=> 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [[0,1,0,0],[0,0,1,0],[1,0,0,0],[0,0,0,1]]
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [[1,0,0,0],[0,0,1,0],[0,0,0,1],[0,1,0,0]]
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [[0,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]]
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,0]]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0]]
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [[1,0,0,0,0],[0,0,0,1,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [[0,1,0,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0]]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1]]
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [[0,0,1,0,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0]]
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [[0,0,0,1,0],[0,0,0,0,1],[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0]]
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,1,0,0,0],[0,0,0,0,1]]
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,0,1,0]]
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [[0,1,0,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,0,1,0,0]]
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1],[0,1,0,0,0]]
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [[0,1,0,0,0],[0,0,1,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,0,0,1]]
=> 2
Description
The inversion number of the alternating sign matrix. If we denote the entries of the alternating sign matrix as $a_{i,j}$, the inversion number is defined as $$\sum_{i > k}\sum_{j < \ell} a_{i,j}a_{k,\ell}.$$ When restricted to permutation matrices, this gives the usual inversion number of the permutation.
Matching statistic: St000081
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00160: Permutations graph of inversionsGraphs
St000081: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> 0
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[1,1,0,0]
=> [1,2] => ([],2)
=> 0
[1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> 2
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 3
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 4
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => ([(3,4)],5)
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> 3
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 6
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> 3
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> 4
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 5
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => ([(2,4),(3,4)],5)
=> 2
Description
The number of edges of a graph.
The following 55 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000224The sorting index of a permutation. St000246The number of non-inversions of a permutation. St000332The positive inversions of an alternating sign matrix. St000572The dimension exponent of a set partition. St001033The normalized area of the parallelogram polyomino associated with the Dyck path. St001397Number of pairs of incomparable elements in a finite poset. St001428The number of B-inversions of a signed permutation. St001726The number of visible inversions of a permutation. St001843The Z-index of a set partition. St001869The maximum cut size of a graph. St000008The major index of the composition. St000305The inverse major index of a permutation. St000330The (standard) major index of a standard tableau. St000491The number of inversions of a set partition. St000496The rcs statistic of a set partition. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St001311The cyclomatic number of a graph. St001328The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph. St000809The reduced reflection length of the permutation. St000957The number of Bruhat lower covers of a permutation. St001076The minimal length of a factorization of a permutation into transpositions that are cyclic shifts of (12). St000728The dimension of a set partition. St000795The mad of a permutation. St000391The sum of the positions of the ones in a binary word. St000833The comajor index of a permutation. St000866The number of admissible inversions of a permutation in the sense of Shareshian-Wachs. St000223The number of nestings in the permutation. St000355The number of occurrences of the pattern 21-3. St001727The number of invisible inversions of a permutation. St000359The number of occurrences of the pattern 23-1. St000358The number of occurrences of the pattern 31-2. St001083The number of boxed occurrences of 132 in a permutation. St001645The pebbling number of a connected graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000039The number of crossings of a permutation. St000095The number of triangles of a graph. St000672The number of minimal elements in Bruhat order not less than the permutation. St001511The minimal number of transpositions needed to sort a permutation in either direction. St000450The number of edges minus the number of vertices plus 2 of a graph. St000327The number of cover relations in a poset. St001861The number of Bruhat lower covers of a permutation. St001894The depth of a signed permutation. St001862The number of crossings of a signed permutation. St001596The number of two-by-two squares inside a skew partition. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001772The number of occurrences of the signed pattern 12 in a signed permutation. St000136The dinv of a parking function. St000194The number of primary dinversion pairs of a labelled dyck path corresponding to a parking function. St000516The number of stretching pairs of a permutation. St001433The flag major index of a signed permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001821The sorting index of a signed permutation. St001877Number of indecomposable injective modules with projective dimension 2. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.