Loading [MathJax]/jax/output/HTML-CSS/jax.js

Your data matches 63 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00100: Dyck paths touch compositionInteger compositions
Mp00040: Integer compositions to partitionInteger partitions
St001280: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> 0
[1,0,1,0]
=> [1,1] => [1,1]
=> 0
[1,1,0,0]
=> [2] => [2]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> 1
[1,1,0,1,0,0]
=> [3] => [3]
=> 1
[1,1,1,0,0,0]
=> [3] => [3]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> 1
Description
The number of parts of an integer partition that are at least two.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00104: Binary words reverseBinary words
St000292: Binary words ⟶ ℤResult quality: 77% values known / values provided: 77%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 => 1 => 0
[1,0,1,0]
=> [1,1] => 11 => 11 => 0
[1,1,0,0]
=> [2] => 10 => 01 => 1
[1,0,1,0,1,0]
=> [1,1,1] => 111 => 111 => 0
[1,0,1,1,0,0]
=> [1,2] => 110 => 011 => 1
[1,1,0,0,1,0]
=> [2,1] => 101 => 101 => 1
[1,1,0,1,0,0]
=> [3] => 100 => 001 => 1
[1,1,1,0,0,0]
=> [3] => 100 => 001 => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 1111 => 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 0111 => 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 1011 => 1
[1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 0011 => 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 0011 => 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 1101 => 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 0101 => 2
[1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 1001 => 1
[1,1,0,1,0,1,0,0]
=> [4] => 1000 => 0001 => 1
[1,1,0,1,1,0,0,0]
=> [4] => 1000 => 0001 => 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1001 => 1
[1,1,1,0,0,1,0,0]
=> [4] => 1000 => 0001 => 1
[1,1,1,0,1,0,0,0]
=> [4] => 1000 => 0001 => 1
[1,1,1,1,0,0,0,0]
=> [4] => 1000 => 0001 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 11111 => 11111 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 01111 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 10111 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 11100 => 00111 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 00111 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 11011 => 11011 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 01011 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 11001 => 10011 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 00011 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 00011 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 10011 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 00011 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 00011 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 00011 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 10111 => 11101 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 01101 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 10101 => 10101 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 00101 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 00101 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 11001 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 01001 => 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 10001 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 00001 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 00001 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 10001 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 00001 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 00001 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 00001 => 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => 100000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => 100000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11] => 110000000000 => 000000000011 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,1,1,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 1000000001 => ? = 1
[1,0,1,1,1,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0]
=> [8,1,1] => 1000000011 => 1100000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [1,8,1] => 1100000001 => 1000000011 => ? = 1
[1,0,1,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00000000011 => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1] => 1111111111 => 1111111111 => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,3] => 1111111100 => 0011111111 => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,1,1,1,1] => 11111111111 => 11111111111 => ? = 0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,1,1,3] => 1111111100 => 0011111111 => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,1,1,1,3] => 11111111100 => 00111111111 => ? = 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,1,6] => 11111100000 => 00000111111 => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,9] => 11100000000 => 00000000111 => ? = 1
Description
The number of ascents of a binary word.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
Mp00105: Binary words complementBinary words
St000390: Binary words ⟶ ℤResult quality: 75% values known / values provided: 75%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 => 0 => 0
[1,0,1,0]
=> [1,1] => 11 => 00 => 0
[1,1,0,0]
=> [2] => 10 => 01 => 1
[1,0,1,0,1,0]
=> [1,1,1] => 111 => 000 => 0
[1,0,1,1,0,0]
=> [1,2] => 110 => 001 => 1
[1,1,0,0,1,0]
=> [2,1] => 101 => 010 => 1
[1,1,0,1,0,0]
=> [3] => 100 => 011 => 1
[1,1,1,0,0,0]
=> [3] => 100 => 011 => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 0000 => 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 0001 => 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 0010 => 1
[1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 0011 => 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 0011 => 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 0100 => 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 0101 => 2
[1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 0110 => 1
[1,1,0,1,0,1,0,0]
=> [4] => 1000 => 0111 => 1
[1,1,0,1,1,0,0,0]
=> [4] => 1000 => 0111 => 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 0110 => 1
[1,1,1,0,0,1,0,0]
=> [4] => 1000 => 0111 => 1
[1,1,1,0,1,0,0,0]
=> [4] => 1000 => 0111 => 1
[1,1,1,1,0,0,0,0]
=> [4] => 1000 => 0111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 11111 => 00000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 00001 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 00010 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 11100 => 00011 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 00011 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 11011 => 00100 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 00101 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 11001 => 00110 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 00111 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 00111 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 00110 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 00111 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 00111 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 00111 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 10111 => 01000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 01001 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 10101 => 01010 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 01011 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 01011 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 01100 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 01101 => 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 01110 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 01111 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 01111 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 01110 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 01111 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 01111 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 01111 => 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 01111111110 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => 011111111110 => ? = 1
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 01111111110 => ? = 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => 011111111110 => ? = 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 01111111110 => ? = 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 01111111110 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11] => 110000000000 => 001111111111 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => 01111111110 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => 0011111111 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => 00111111111 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
[1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => 0111111110 => ? = 1
Description
The number of runs of ones in a binary word.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00094: Integer compositions to binary wordBinary words
St000291: Binary words ⟶ ℤResult quality: 72% values known / values provided: 72%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => 1 => 0
[1,0,1,0]
=> [1,1] => 11 => 0
[1,1,0,0]
=> [2] => 10 => 1
[1,0,1,0,1,0]
=> [1,1,1] => 111 => 0
[1,0,1,1,0,0]
=> [1,2] => 110 => 1
[1,1,0,0,1,0]
=> [2,1] => 101 => 1
[1,1,0,1,0,0]
=> [3] => 100 => 1
[1,1,1,0,0,0]
=> [3] => 100 => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1111 => 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => 1110 => 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => 1101 => 1
[1,0,1,1,0,1,0,0]
=> [1,3] => 1100 => 1
[1,0,1,1,1,0,0,0]
=> [1,3] => 1100 => 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => 1011 => 1
[1,1,0,0,1,1,0,0]
=> [2,2] => 1010 => 2
[1,1,0,1,0,0,1,0]
=> [3,1] => 1001 => 1
[1,1,0,1,0,1,0,0]
=> [4] => 1000 => 1
[1,1,0,1,1,0,0,0]
=> [4] => 1000 => 1
[1,1,1,0,0,0,1,0]
=> [3,1] => 1001 => 1
[1,1,1,0,0,1,0,0]
=> [4] => 1000 => 1
[1,1,1,0,1,0,0,0]
=> [4] => 1000 => 1
[1,1,1,1,0,0,0,0]
=> [4] => 1000 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => 11111 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => 11110 => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => 11101 => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => 11100 => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => 11100 => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => 11011 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => 11010 => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => 11001 => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => 11000 => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => 11000 => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => 11001 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => 11000 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => 11000 => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => 11000 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 10111 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 10110 => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 10101 => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => 10100 => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 10100 => 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => 10011 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => 10010 => 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => 10001 => 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => 10000 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => 10001 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => 10000 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => 10000 => 1
[1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0]
=> [11,1] => 100000000001 => ? = 1
[1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0,0,0,0]
=> [1,11] => 110000000000 => ? = 1
[1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0]
=> [10,1] => 10000000001 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0,0]
=> [1,9] => 1100000000 => ? = 1
[1,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0]
=> [1,10] => 11000000000 => ? = 1
[1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
[1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,1,0]
=> [9,1] => 1000000001 => ? = 1
Description
The number of descents of a binary word.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
St000374: Permutations ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => [4,3,2,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,4,3,2,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,5,3,4,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => ? = 2
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => ? = 3
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => ? = 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 3
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => ? = 2
Description
The number of exclusive right-to-left minima of a permutation. This is the number of right-to-left minima that are not left-to-right maxima. This is also the number of non weak exceedences of a permutation that are also not mid-points of a decreasing subsequence of length 3. Given a permutation $\pi = [\pi_1,\ldots,\pi_n]$, this statistic counts the number of position $j$ such that $\pi_j < j$ and there do not exist indices $i,k$ with $i < j < k$ and $\pi_i > \pi_j > \pi_k$. See also [[St000213]] and [[St000119]].
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00159: Permutations Demazure product with inversePermutations
Mp00159: Permutations Demazure product with inversePermutations
St000996: Permutations ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 0
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 0
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [4,3,2,1] => 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,2,3,1] => [4,3,2,1] => 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,3,4,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,5,4,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [3,2,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [3,2,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,4,3,2,1] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,4,3,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,3,2,4,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]
=> [1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,3,4,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]
=> [1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,3,5,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]
=> [1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,4,3,5,2,7,6] => [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]
=> [1,5,3,4,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,5,3,4,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,5,3,4,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,6,3,4,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,6,3,5,4,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => [1,5,4,3,2,6,7] => ? = 1
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => [1,5,4,3,2,7,6] => ? = 2
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,5,4,3,6,2,7] => [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,6,4,3,5,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,6,4,5,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => [1,6,5,4,3,2,7] => ? = 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => [2,1,3,4,5,7,6] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]
=> [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => [2,1,3,4,6,5,7] => ? = 2
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]
=> [2,1,3,4,6,7,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => ? = 2
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]
=> [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => [2,1,3,4,7,6,5] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]
=> [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => [2,1,3,5,4,6,7] => ? = 2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]
=> [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => [2,1,3,5,4,7,6] => ? = 3
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]
=> [2,1,3,5,6,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => ? = 2
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]
=> [2,1,3,5,6,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]
=> [2,1,3,5,7,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => [2,1,3,6,5,4,7] => ? = 2
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]
=> [2,1,3,6,5,7,4] => [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]
=> [2,1,3,7,5,6,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => [2,1,3,7,6,5,4] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => [2,1,4,3,5,6,7] => ? = 2
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => [2,1,4,3,5,7,6] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => [2,1,4,3,6,5,7] => ? = 3
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,3,6,7,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => ? = 3
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => [2,1,4,3,7,6,5] => ? = 3
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]
=> [2,1,4,5,3,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => ? = 2
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [2,1,4,5,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]
=> [2,1,4,5,6,3,7] => [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]
=> [2,1,4,6,5,3,7] => [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]
=> [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => [2,1,5,4,3,6,7] => ? = 2
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => [2,1,5,4,3,7,6] => ? = 3
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]
=> [2,1,5,4,6,3,7] => [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => ? = 2
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]
=> [2,1,6,4,5,3,7] => [2,1,6,5,4,3,7] => [2,1,6,5,4,3,7] => ? = 2
Description
The number of exclusive left-to-right maxima of a permutation. This is the number of left-to-right maxima that are not right-to-left minima.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00314: Integer compositions Foata bijectionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
St000659: Dyck paths ⟶ ℤResult quality: 23% values known / values provided: 23%distinct values known / distinct values provided: 71%
Values
[1,0]
=> [1] => [1] => [1,0]
=> ? = 0
[1,0,1,0]
=> [1,1] => [1,1] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2] => [2] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,2] => [1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1] => [2,1] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [3] => [3] => [1,1,1,0,0,0]
=> 1
[1,1,1,0,0,0]
=> [3] => [3] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [1,1,2] => [1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1] => [1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,3] => [1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2,1] => [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2] => [1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [1,1,1,2] => [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [1,1,3] => [1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,2,1,1] => [1,0,1,1,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2,2] => [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,4] => [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,1,2,1] => [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [1,3,1] => [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,3,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,3,1] => [3,1,1,1,1,1] => [1,1,1,0,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,3,2] => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,3,2] => [3,1,1,1,2] => [1,1,1,0,0,0,1,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,4,1] => [4,1,1,1,1] => [1,1,1,1,0,0,0,0,1,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0]
=> [1,1,3,2,1] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,4,2] => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,0,1,0,1,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,4,2] => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,0,1,1,0,0,1,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0,1,0]
=> [1,1,3,2,1] => [3,2,1,1,1] => [1,1,1,0,0,0,1,1,0,0,1,0,1,0,1,0]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,1,0,0]
=> [1,1,4,2] => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,1,0,0]
=> [1,1,4,2] => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,0,1,0,0,1,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,1,0,0]
=> [1,1,4,2] => [4,1,1,2] => [1,1,1,1,0,0,0,0,1,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,5,1] => [5,1,1,1] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,3,2] => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,0,0,1,1,1,0,0,0,1,1,0,0]
=> [1,2,3,2] => [3,1,2,2] => [1,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0]
=> ? = 3
[1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,0]
=> [1,3,1,2,1] => [3,1,2,1,1] => [1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0]
=> [1,3,1,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,1,3] => [3,1,1,3] => [1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,0,1,0,0,1,0]
=> [1,3,3,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0]
=> [1,3,3,1] => [3,1,3,1] => [1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,0,1,0]
=> [1,4,2,1] => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,0,1,0,0]
=> [1,4,3] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,0,1,1,1,0,0,0]
=> [1,4,3] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,0,1,1,0,0]
=> [1,5,2] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0]
=> [1,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,0,1,1,0,0,0,1,0]
=> [1,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,0,0,1,1,0,0]
=> [1,5,2] => [5,1,2] => [1,1,1,1,1,0,0,0,0,0,1,0,1,1,0,0]
=> ? = 2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0,1,0]
=> [1,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,1,0,1,0,0,0,1,0]
=> [1,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,0,1,1,1,0,0,0,0,1,0]
=> [1,6,1] => [6,1,1] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0]
=> ? = 1
[1,0,1,1,0,1,1,0,0,0,1,1,0,0,1,0]
=> [1,4,2,1] => [4,2,1,1] => [1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,0]
=> ? = 2
[1,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0]
=> [1,4,3] => [4,1,3] => [1,1,1,1,0,0,0,0,1,0,1,1,1,0,0,0]
=> ? = 2
Description
The number of rises of length at least 2 of a Dyck path.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000245: Permutations ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [3,5,4,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [3,5,4,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [3,5,2,4,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,5,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [3,5,2,1,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,5,1,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [6,7,5,4,3,2,1] => [6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => [6,5,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [5,7,6,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => [6,5,4,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [5,6,4,7,3,2,1] => [5,7,4,6,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,6,5,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => [6,5,4,3,7,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [5,6,4,3,7,2,1] => [5,7,4,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [5,4,7,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [4,6,5,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,3,7,6,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [4,5,3,6,7,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,5,4,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,4,6,5,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [6,5,4,3,2,7,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [5,6,4,3,2,7,1] => [5,7,4,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,4,6,3,2,7,1] => [5,4,7,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [4,6,5,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,4,3,6,2,7,1] => [5,4,3,7,2,6,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [4,5,3,6,2,7,1] => [4,7,3,6,2,5,1] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [4,3,6,5,2,7,1] => [4,3,7,6,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [3,7,6,5,2,4,1] => ? = 2
Description
The number of ascents of a permutation.
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000672: Permutations ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [3,5,4,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [3,5,4,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [3,5,2,4,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,5,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [3,5,2,1,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,5,1,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [6,7,5,4,3,2,1] => [6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => [6,5,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [5,7,6,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => [6,5,4,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [5,6,4,7,3,2,1] => [5,7,4,6,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,6,5,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => [6,5,4,3,7,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [5,6,4,3,7,2,1] => [5,7,4,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [5,4,7,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [4,6,5,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,3,7,6,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [4,5,3,6,7,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,5,4,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,4,6,5,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [6,5,4,3,2,7,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [5,6,4,3,2,7,1] => [5,7,4,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,4,6,3,2,7,1] => [5,4,7,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [4,6,5,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,4,3,6,2,7,1] => [5,4,3,7,2,6,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [4,5,3,6,2,7,1] => [4,7,3,6,2,5,1] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [4,3,6,5,2,7,1] => [4,3,7,6,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [3,7,6,5,2,4,1] => ? = 2
Description
The number of minimal elements in Bruhat order not less than the permutation. The minimal elements in question are biGrassmannian, that is $$1\dots r\ \ a+1\dots b\ \ r+1\dots a\ \ b+1\dots$$ for some $(r,a,b)$. This is also the size of Fulton's essential set of the reverse permutation, according to [ex.4.7, 2].
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000834: Permutations ⟶ ℤResult quality: 19% values known / values provided: 19%distinct values known / distinct values provided: 57%
Values
[1,0]
=> [1,0]
=> [1] => [1] => 0
[1,0,1,0]
=> [1,1,0,0]
=> [2,1] => [2,1] => 0
[1,1,0,0]
=> [1,0,1,0]
=> [1,2] => [1,2] => 1
[1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => 0
[1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => 1
[1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> [1,2,3] => [1,3,2] => 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => 0
[1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [2,4,3,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,4,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,4,1,3] => 2
[1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => 1
[1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => 1
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => 1
[1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,4,3] => 1
[1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,4,3,2] => 1
[1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,4,3,2] => 1
[1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,5,4,2,1] => [3,5,4,2,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,2,1] => [3,5,4,2,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,4,2,5,1] => [3,5,2,4,1] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2,5,4,1] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2,4,5,1] => [3,2,5,4,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [2,5,4,3,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,4,2,1,5] => [3,5,2,1,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => [3,2,5,1,4] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [2,5,4,1,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,5,4,1,3] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2,1,5,4] => [3,2,1,5,4] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [2,5,1,4,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,3,2] => 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,4,3,2] => 1
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [6,7,5,4,3,2,1] => [6,7,5,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> [6,5,7,4,3,2,1] => [6,5,7,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [5,7,6,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> [5,6,7,4,3,2,1] => [5,7,6,4,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0]
=> [6,5,4,7,3,2,1] => [6,5,4,7,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,1,0,0,0,0]
=> [5,6,4,7,3,2,1] => [5,7,4,6,3,2,1] => ? = 2
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> [5,4,7,6,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [4,7,6,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,1,1,0,1,1,0,1,0,0,0,0,0]
=> [4,6,7,5,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,1,0,0,0,0]
=> [5,4,6,7,3,2,1] => [5,4,7,6,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,1,0,0,0,0]
=> [4,6,5,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,1,0,0,0,0,0]
=> [4,5,7,6,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,1,0,0,0,0]
=> [4,5,6,7,3,2,1] => [4,7,6,5,3,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,1,0,0,0]
=> [6,5,4,3,7,2,1] => [6,5,4,3,7,2,1] => ? = 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,1,0,0,0]
=> [5,6,4,3,7,2,1] => [5,7,4,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,1,0,0,0]
=> [5,4,6,3,7,2,1] => [5,4,7,3,6,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,1,0,0,0]
=> [4,6,5,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,1,0,0,0]
=> [4,5,6,3,7,2,1] => [4,7,6,3,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,1,0,0,0,0]
=> [5,4,3,7,6,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,1,0,0,0,0]
=> [4,5,3,7,6,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> [4,3,7,6,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [3,7,6,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,1,0,1,0,0,0,0,0]
=> [3,6,7,5,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,1,0,0,0,0]
=> [4,3,6,7,5,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,0]
=> [3,6,5,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,5,7,6,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,0,1,0,0,0,0]
=> [3,5,6,7,4,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,1,0,0,0]
=> [5,4,3,6,7,2,1] => [5,4,3,7,6,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,1,0,0,0]
=> [4,5,3,6,7,2,1] => [4,7,3,6,5,2,1] => ? = 2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,1,0,0,0]
=> [4,3,6,5,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,1,0,0,0]
=> [3,6,5,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,1,0,0,0]
=> [3,5,6,4,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,1,0,0,0,0]
=> [4,3,5,7,6,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,5,4,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,4,7,6,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,0]
=> [3,4,6,7,5,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,1,0,1,0,0,0]
=> [4,3,5,6,7,2,1] => [4,3,7,6,5,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,1,0,0,0]
=> [3,5,4,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,1,0,0,0]
=> [3,4,6,5,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,4,5,7,6,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,0,1,0,1,0,1,0,1,0,0,0]
=> [3,4,5,6,7,2,1] => [3,7,6,5,4,2,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,1,0,0]
=> [6,5,4,3,2,7,1] => [6,5,4,3,2,7,1] => ? = 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,1,0,0]
=> [5,6,4,3,2,7,1] => [5,7,4,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> [5,4,6,3,2,7,1] => [5,4,7,3,2,6,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,1,0,0]
=> [4,6,5,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,1,0,0]
=> [4,5,6,3,2,7,1] => [4,7,6,3,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,1,0,0,1,0,0]
=> [5,4,3,6,2,7,1] => [5,4,3,7,2,6,1] => ? = 2
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,1,0,0]
=> [4,5,3,6,2,7,1] => [4,7,3,6,2,5,1] => ? = 3
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,1,0,0,0,1,0,0]
=> [4,3,6,5,2,7,1] => [4,3,7,6,2,5,1] => ? = 2
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,1,0,0]
=> [3,6,5,4,2,7,1] => [3,7,6,5,2,4,1] => ? = 2
Description
The number of right outer peaks of a permutation. A right outer peak in a permutation $w = [w_1,..., w_n]$ is either a position $i$ such that $w_{i-1} < w_i > w_{i+1}$ or $n$ if $w_n > w_{n-1}$. In other words, it is a peak in the word $[w_1,..., w_n,0]$.
The following 53 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000919The number of maximal left branches of a binary tree. St001613The binary logarithm of the size of the center of a lattice. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001333The cardinality of a minimal edge-isolating set of a graph. St000985The number of positive eigenvalues of the adjacency matrix of the graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St000258The burning number of a graph. St000658The number of rises of length 2 of a Dyck path. St000024The number of double up and double down steps of a Dyck path. St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001354The number of series nodes in the modular decomposition of a graph. St001665The number of pure excedances of a permutation. St001737The number of descents of type 2 in a permutation. St001060The distinguishing index of a graph. St000260The radius of a connected graph. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000456The monochromatic index of a connected graph. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001298The number of repeated entries in the Lehmer code of a permutation. St000443The number of long tunnels of a Dyck path. St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra. St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St001545The second Elser number of a connected graph. St001330The hat guessing number of a graph. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St000455The second largest eigenvalue of a graph if it is integral. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000640The rank of the largest boolean interval in a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000660The number of rises of length at least 3 of a Dyck path. St001104The number of descents of the invariant in a tensor power of the adjoint representation of the rank two general linear group. St000264The girth of a graph, which is not a tree. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001597The Frobenius rank of a skew partition. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001335The cardinality of a minimal cycle-isolating set of a graph. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001624The breadth of a lattice.