searching the database
Your data matches 2 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001303
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> 1
([],2)
=> 1
([(0,1)],2)
=> 3
([],3)
=> 1
([(1,2)],3)
=> 3
([(0,2),(1,2)],3)
=> 5
([(0,1),(0,2),(1,2)],3)
=> 7
([],4)
=> 1
([(2,3)],4)
=> 3
([(1,3),(2,3)],4)
=> 5
([(0,3),(1,3),(2,3)],4)
=> 9
([(0,3),(1,2)],4)
=> 9
([(0,3),(1,2),(2,3)],4)
=> 9
([(1,2),(1,3),(2,3)],4)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> 11
([(0,2),(0,3),(1,2),(1,3)],4)
=> 11
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 13
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 15
([],5)
=> 1
([(3,4)],5)
=> 3
([(2,4),(3,4)],5)
=> 5
([(1,4),(2,4),(3,4)],5)
=> 9
([(0,4),(1,4),(2,4),(3,4)],5)
=> 17
([(1,4),(2,3)],5)
=> 9
([(1,4),(2,3),(3,4)],5)
=> 9
([(0,1),(2,4),(3,4)],5)
=> 15
([(2,3),(2,4),(3,4)],5)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> 15
([(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 19
([(1,3),(1,4),(2,3),(2,4)],5)
=> 11
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 19
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 17
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 21
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 23
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 25
([(0,4),(1,3),(2,3),(2,4)],5)
=> 17
([(0,1),(2,3),(2,4),(3,4)],5)
=> 21
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 21
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 25
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 21
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 23
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 25
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 21
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 15
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 23
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 27
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 25
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 27
Description
The number of dominating sets of vertices of a graph.
This is, the number of subsets of vertices such that every vertex is either in this subset or adjacent to an element therein [1].
Matching statistic: St001794
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
([],1)
=> ([(0,1)],2)
=> 1
([],2)
=> ([(0,2),(1,2)],3)
=> 1
([(0,1)],2)
=> ([(0,1),(0,2),(1,2)],3)
=> 3
([],3)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
([(1,2)],3)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 3
([(0,2),(1,2)],3)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 5
([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 7
([],4)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
([(2,3)],4)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 3
([(1,3),(2,3)],4)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(0,3),(1,2)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 9
([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 9
([(1,2),(1,3),(2,3)],4)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 7
([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 11
([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 11
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 13
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 15
([],5)
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
([(3,4)],5)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
([(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5
([(1,4),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
([(1,4),(2,3)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 9
([(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 9
([(0,1),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 7
([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 11
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 19
([(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 11
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 19
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 13
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 17
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 17
([(0,1),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)
=> 21
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 25
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 21
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 15
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 23
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 27
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)
=> 25
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 27
([(1,2),(3,4),(3,5),(4,5)],6)
=> ([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 21
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 33
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7)
=> ? = 33
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7)
=> ? = 35
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 39
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)
=> ([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 35
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 35
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 39
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 49
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? = 45
([],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? = 1
([(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
([(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 5
([(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
([(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
([(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 33
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 65
([(3,6),(4,5)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 9
([(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 9
([(2,3),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,3),(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
([(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 7
([(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 15
([(1,2),(3,6),(4,6),(5,6)],7)
=> ([(0,7),(1,2),(1,7),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 27
([(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 11
([(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 27
([(0,1),(2,6),(3,6),(4,6),(5,6)],7)
=> ([(0,1),(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 51
([(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 51
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 35
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 67
([(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 11
([(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 25
([(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 19
([(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 29
([(0,6),(1,6),(2,6),(3,5),(4,5)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,7),(6,7)],8)
=> ? = 45
([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 13
([(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 17
([(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 25
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,5),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 33
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,4),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 53
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 21
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 29
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 45
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 61
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 37
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 53
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 69
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,7),(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 23
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7)
=> ([(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 33
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7)
=> ([(0,6),(0,7),(1,6),(1,7),(2,5),(2,7),(3,5),(3,7),(4,5),(4,6),(4,7),(5,7),(6,7)],8)
=> ? = 49
Description
Half the number of sets of vertices in a graph which are dominating and non-blocking.
A set of vertices $U$ in a graph is dominating, if every vertex not in $U$ is adjacent to a vertex in $U$.
A set of vertices $U$ in a graph is non-blocking, if every vertex in $U$ is adjacent to a vertex not in $U$.
Therefore, a set of vertices is non-blocking if and only if its complement is dominating. In particular, if a set of vertices is dominating and non-blocking, so is its complement.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!