searching the database
Your data matches 1 statistic following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001362
Values
([],1)
=> 0
([],2)
=> 0
([(0,1)],2)
=> 1
([],3)
=> 0
([(1,2)],3)
=> 2
([(0,2),(1,2)],3)
=> 3
([(0,1),(0,2),(1,2)],3)
=> 6
([],4)
=> 0
([(2,3)],4)
=> 6
([(1,3),(2,3)],4)
=> 9
([(0,3),(1,3),(2,3)],4)
=> 12
([(0,3),(1,2)],4)
=> 12
([(0,3),(1,2),(2,3)],4)
=> 12
([(1,2),(1,3),(2,3)],4)
=> 18
([(0,3),(1,2),(1,3),(2,3)],4)
=> 20
([(0,2),(0,3),(1,2),(1,3)],4)
=> 12
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 24
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 36
([],5)
=> 0
([(3,4)],5)
=> 24
([(2,4),(3,4)],5)
=> 36
([(1,4),(2,4),(3,4)],5)
=> 48
([(0,4),(1,4),(2,4),(3,4)],5)
=> 60
([(1,4),(2,3)],5)
=> 48
([(1,4),(2,3),(3,4)],5)
=> 48
([(0,1),(2,4),(3,4)],5)
=> 60
([(2,3),(2,4),(3,4)],5)
=> 72
([(0,4),(1,4),(2,3),(3,4)],5)
=> 60
([(1,4),(2,3),(2,4),(3,4)],5)
=> 80
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 90
([(1,3),(1,4),(2,3),(2,4)],5)
=> 48
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 60
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 96
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 88
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 105
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 60
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 120
([(0,4),(1,3),(2,3),(2,4)],5)
=> 60
([(0,1),(2,3),(2,4),(3,4)],5)
=> 96
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> 92
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> 120
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)
=> 60
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> 88
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> 120
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> 104
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 144
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 150
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 160
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> 100
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> 120
Description
The normalized Knill dimension of a graph.
The Knill dimension [1], [2] is a rational number associated with a graph as follows: for the empty graph $\dim(G) = -1$. For a graph with non-empty vertex set $V$, it is $\dim(G) = 1 + \frac{1}{|V|}\sum_{v\in V}\dim(N_v)$, where
$N_v$ is the subgraph of $G$ induced by the set of neighbours of $v$.
Conjecturally, the least common multiple of the denominators of all graphs is the order of the alternating group [[oeis:A001710]]. Thus, the normalized Knill dimension is the Knill dimension multiplied with the number.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!