Your data matches 16 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00012: Binary trees to Dyck path: up step, left tree, down step, right treeDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
St000381: Integer compositions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [.,.]
=> [1,0]
=> [1] => 1
[[],[]]
=> [[.,.],.]
=> [1,1,0,0]
=> [2] => 2
[[[]]]
=> [.,[.,.]]
=> [1,0,1,0]
=> [1,1] => 1
[[],[],[]]
=> [[[.,.],.],.]
=> [1,1,1,0,0,0]
=> [3] => 3
[[],[[]]]
=> [[.,.],[.,.]]
=> [1,1,0,0,1,0]
=> [2,1] => 2
[[[]],[]]
=> [[.,[.,.]],.]
=> [1,1,0,1,0,0]
=> [2,1] => 2
[[[],[]]]
=> [.,[[.,.],.]]
=> [1,0,1,1,0,0]
=> [1,2] => 2
[[[[]]]]
=> [.,[.,[.,.]]]
=> [1,0,1,0,1,0]
=> [1,1,1] => 1
[[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,1,1,1,0,0,0,0]
=> [4] => 4
[[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => 3
[[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => 3
[[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => 2
[[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => 2
[[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => 3
[[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => 2
[[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => 2
[[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => 2
[[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => 3
[[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => 2
[[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => 2
[[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => 2
[[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => 1
[[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => 5
[[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => 4
[[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => 4
[[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => 3
[[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => 3
[[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => 4
[[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => 3
[[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => 3
[[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => 3
[[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => 3
[[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => 2
[[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => 2
[[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => 2
[[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => 2
[[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => 4
[[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => 3
[[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => 3
[[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => 2
[[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => 2
[[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => 3
[[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => 3
[[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => 2
[[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => 2
[[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => 2
[[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => 2
[[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => 2
[[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => 2
Description
The largest part of an integer composition.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00093: Dyck paths to binary wordBinary words
St000392: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> 10 => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1100 => 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1010 => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 111000 => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 110010 => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 101100 => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 101010 => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2
Description
The length of the longest run of ones in a binary word.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
Mp00093: Dyck paths to binary wordBinary words
St001372: Binary words ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> 10 => 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 1100 => 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1010 => 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 111000 => 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 110100 => 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 110010 => 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 101100 => 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 101010 => 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 11110000 => 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 11101000 => 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 11100100 => 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 11011000 => 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 11010100 => 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 11100010 => 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 11010010 => 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 11001100 => 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 11001010 => 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 10111000 => 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 10110100 => 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 10110010 => 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 10101100 => 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 10101010 => 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 1111100000 => 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1111010000 => 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1111001000 => 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1110110000 => 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1110101000 => 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 1111000100 => 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1110100100 => 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 1110011000 => 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1110010100 => 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 1101110000 => 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1101101000 => 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 1101100100 => 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 1101011000 => 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 1101010100 => 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1111000010 => 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1110100010 => 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1110010010 => 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 1101100010 => 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 1101010010 => 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 1110001100 => 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1110001010 => 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 1101001100 => 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 1101001010 => 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 1100111000 => 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 1100110100 => 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 1100110010 => 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 1100101100 => 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 1100101010 => 2
Description
The length of a longest cyclic run of ones of a binary word. Consider the binary word as a cyclic arrangement of ones and zeros. Then this statistic is the length of the longest continuous sequence of ones in this arrangement.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00101: Dyck paths decomposition reverseDyck paths
St000444: Dyck paths ⟶ ℤResult quality: 97% values known / values provided: 97%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> [1,0]
=> ? = 1
[[],[]]
=> [1,0,1,0]
=> [1,1,0,0]
=> 2
[[[]]]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> [1,0,1,1,0,1,0,0]
=> 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,0]
=> 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 2
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> 4
[[[]],[],[],[],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? = 7
[[[]],[],[],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0,1,0]
=> ? = 6
[[[]],[],[],[],[[]],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,1,1,1,0,0,1,0,0,0,0,0,1,0]
=> ? = 6
[[[]],[],[],[],[[],[]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0,1,0]
=> ? = 5
[[[]],[],[],[],[[[]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0,1,0]
=> ? = 5
[[[]],[],[],[[]],[],[]]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,1,0,0,0,0,1,0]
=> ? = 6
[[[]],[],[],[[],[],[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0,1,0]
=> ? = 4
Description
The length of the maximal rise of a Dyck path.
Mp00051: Ordered trees to Dyck pathDyck paths
Mp00138: Dyck paths to noncrossing partitionSet partitions
Mp00221: Set partitions conjugateSet partitions
St001062: Set partitions ⟶ ℤResult quality: 96% values known / values provided: 96%distinct values known / distinct values provided: 100%
Values
[[]]
=> [1,0]
=> {{1}}
=> {{1}}
=> ? = 1
[[],[]]
=> [1,0,1,0]
=> {{1},{2}}
=> {{1,2}}
=> 2
[[[]]]
=> [1,1,0,0]
=> {{1,2}}
=> {{1},{2}}
=> 1
[[],[],[]]
=> [1,0,1,0,1,0]
=> {{1},{2},{3}}
=> {{1,2,3}}
=> 3
[[],[[]]]
=> [1,0,1,1,0,0]
=> {{1},{2,3}}
=> {{1,3},{2}}
=> 2
[[[]],[]]
=> [1,1,0,0,1,0]
=> {{1,2},{3}}
=> {{1,2},{3}}
=> 2
[[[],[]]]
=> [1,1,0,1,0,0]
=> {{1,3},{2}}
=> {{1},{2,3}}
=> 2
[[[[]]]]
=> [1,1,1,0,0,0]
=> {{1,2,3}}
=> {{1},{2},{3}}
=> 1
[[],[],[],[]]
=> [1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4}}
=> {{1,2,3,4}}
=> 4
[[],[],[[]]]
=> [1,0,1,0,1,1,0,0]
=> {{1},{2},{3,4}}
=> {{1,3,4},{2}}
=> 3
[[],[[]],[]]
=> [1,0,1,1,0,0,1,0]
=> {{1},{2,3},{4}}
=> {{1,2,4},{3}}
=> 3
[[],[[],[]]]
=> [1,0,1,1,0,1,0,0]
=> {{1},{2,4},{3}}
=> {{1,4},{2,3}}
=> 2
[[],[[[]]]]
=> [1,0,1,1,1,0,0,0]
=> {{1},{2,3,4}}
=> {{1,4},{2},{3}}
=> 2
[[[]],[],[]]
=> [1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4}}
=> {{1,2,3},{4}}
=> 3
[[[]],[[]]]
=> [1,1,0,0,1,1,0,0]
=> {{1,2},{3,4}}
=> {{1,3},{2},{4}}
=> 2
[[[],[]],[]]
=> [1,1,0,1,0,0,1,0]
=> {{1,3},{2},{4}}
=> {{1,2},{3,4}}
=> 2
[[[[]]],[]]
=> [1,1,1,0,0,0,1,0]
=> {{1,2,3},{4}}
=> {{1,2},{3},{4}}
=> 2
[[[],[],[]]]
=> [1,1,0,1,0,1,0,0]
=> {{1,4},{2},{3}}
=> {{1},{2,3,4}}
=> 3
[[[],[[]]]]
=> [1,1,0,1,1,0,0,0]
=> {{1,3,4},{2}}
=> {{1},{2},{3,4}}
=> 2
[[[[]],[]]]
=> [1,1,1,0,0,1,0,0]
=> {{1,4},{2,3}}
=> {{1},{2,4},{3}}
=> 2
[[[[],[]]]]
=> [1,1,1,0,1,0,0,0]
=> {{1,2,4},{3}}
=> {{1},{2,3},{4}}
=> 2
[[[[[]]]]]
=> [1,1,1,1,0,0,0,0]
=> {{1,2,3,4}}
=> {{1},{2},{3},{4}}
=> 1
[[],[],[],[],[]]
=> [1,0,1,0,1,0,1,0,1,0]
=> {{1},{2},{3},{4},{5}}
=> {{1,2,3,4,5}}
=> 5
[[],[],[],[[]]]
=> [1,0,1,0,1,0,1,1,0,0]
=> {{1},{2},{3},{4,5}}
=> {{1,3,4,5},{2}}
=> 4
[[],[],[[]],[]]
=> [1,0,1,0,1,1,0,0,1,0]
=> {{1},{2},{3,4},{5}}
=> {{1,2,4,5},{3}}
=> 4
[[],[],[[],[]]]
=> [1,0,1,0,1,1,0,1,0,0]
=> {{1},{2},{3,5},{4}}
=> {{1,4,5},{2,3}}
=> 3
[[],[],[[[]]]]
=> [1,0,1,0,1,1,1,0,0,0]
=> {{1},{2},{3,4,5}}
=> {{1,4,5},{2},{3}}
=> 3
[[],[[]],[],[]]
=> [1,0,1,1,0,0,1,0,1,0]
=> {{1},{2,3},{4},{5}}
=> {{1,2,3,5},{4}}
=> 4
[[],[[]],[[]]]
=> [1,0,1,1,0,0,1,1,0,0]
=> {{1},{2,3},{4,5}}
=> {{1,3,5},{2},{4}}
=> 3
[[],[[],[]],[]]
=> [1,0,1,1,0,1,0,0,1,0]
=> {{1},{2,4},{3},{5}}
=> {{1,2,5},{3,4}}
=> 3
[[],[[[]]],[]]
=> [1,0,1,1,1,0,0,0,1,0]
=> {{1},{2,3,4},{5}}
=> {{1,2,5},{3},{4}}
=> 3
[[],[[],[],[]]]
=> [1,0,1,1,0,1,0,1,0,0]
=> {{1},{2,5},{3},{4}}
=> {{1,5},{2,3,4}}
=> 3
[[],[[],[[]]]]
=> [1,0,1,1,0,1,1,0,0,0]
=> {{1},{2,4,5},{3}}
=> {{1,5},{2},{3,4}}
=> 2
[[],[[[]],[]]]
=> [1,0,1,1,1,0,0,1,0,0]
=> {{1},{2,5},{3,4}}
=> {{1,5},{2,4},{3}}
=> 2
[[],[[[],[]]]]
=> [1,0,1,1,1,0,1,0,0,0]
=> {{1},{2,3,5},{4}}
=> {{1,5},{2,3},{4}}
=> 2
[[],[[[[]]]]]
=> [1,0,1,1,1,1,0,0,0,0]
=> {{1},{2,3,4,5}}
=> {{1,5},{2},{3},{4}}
=> 2
[[[]],[],[],[]]
=> [1,1,0,0,1,0,1,0,1,0]
=> {{1,2},{3},{4},{5}}
=> {{1,2,3,4},{5}}
=> 4
[[[]],[],[[]]]
=> [1,1,0,0,1,0,1,1,0,0]
=> {{1,2},{3},{4,5}}
=> {{1,3,4},{2},{5}}
=> 3
[[[]],[[]],[]]
=> [1,1,0,0,1,1,0,0,1,0]
=> {{1,2},{3,4},{5}}
=> {{1,2,4},{3},{5}}
=> 3
[[[]],[[],[]]]
=> [1,1,0,0,1,1,0,1,0,0]
=> {{1,2},{3,5},{4}}
=> {{1,4},{2,3},{5}}
=> 2
[[[]],[[[]]]]
=> [1,1,0,0,1,1,1,0,0,0]
=> {{1,2},{3,4,5}}
=> {{1,4},{2},{3},{5}}
=> 2
[[[],[]],[],[]]
=> [1,1,0,1,0,0,1,0,1,0]
=> {{1,3},{2},{4},{5}}
=> {{1,2,3},{4,5}}
=> 3
[[[[]]],[],[]]
=> [1,1,1,0,0,0,1,0,1,0]
=> {{1,2,3},{4},{5}}
=> {{1,2,3},{4},{5}}
=> 3
[[[],[]],[[]]]
=> [1,1,0,1,0,0,1,1,0,0]
=> {{1,3},{2},{4,5}}
=> {{1,3},{2},{4,5}}
=> 2
[[[[]]],[[]]]
=> [1,1,1,0,0,0,1,1,0,0]
=> {{1,2,3},{4,5}}
=> {{1,3},{2},{4},{5}}
=> 2
[[[],[],[]],[]]
=> [1,1,0,1,0,1,0,0,1,0]
=> {{1,4},{2},{3},{5}}
=> {{1,2},{3,4,5}}
=> 3
[[[],[[]]],[]]
=> [1,1,0,1,1,0,0,0,1,0]
=> {{1,3,4},{2},{5}}
=> {{1,2},{3},{4,5}}
=> 2
[[[[]],[]],[]]
=> [1,1,1,0,0,1,0,0,1,0]
=> {{1,4},{2,3},{5}}
=> {{1,2},{3,5},{4}}
=> 2
[[[[],[]]],[]]
=> [1,1,1,0,1,0,0,0,1,0]
=> {{1,2,4},{3},{5}}
=> {{1,2},{3,4},{5}}
=> 2
[[[[[]]]],[]]
=> [1,1,1,1,0,0,0,0,1,0]
=> {{1,2,3,4},{5}}
=> {{1,2},{3},{4},{5}}
=> 2
[[[],[],[],[]]]
=> [1,1,0,1,0,1,0,1,0,0]
=> {{1,5},{2},{3},{4}}
=> {{1},{2,3,4,5}}
=> 4
[[[]],[],[],[],[],[[]]]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> {{1,2},{3},{4},{5},{6},{7,8}}
=> {{1,3,4,5,6,7},{2},{8}}
=> ? = 6
[[[]],[],[],[],[[]],[]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> {{1,2},{3},{4},{5},{6,7},{8}}
=> {{1,2,4,5,6,7},{3},{8}}
=> ? = 6
[[[]],[],[],[],[[],[]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> {{1,2},{3},{4},{5},{6,8},{7}}
=> {{1,4,5,6,7},{2,3},{8}}
=> ? = 5
[[[]],[],[],[],[[[]]]]
=> [1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0]
=> {{1,2},{3},{4},{5},{6,7,8}}
=> {{1,4,5,6,7},{2},{3},{8}}
=> ? = 5
[[[]],[],[],[[]],[],[]]
=> [1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> {{1,2},{3},{4},{5,6},{7},{8}}
=> {{1,2,3,5,6,7},{4},{8}}
=> ? = 6
[[[]],[],[],[[],[],[]]]
=> [1,1,0,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> {{1,2},{3},{4},{5,8},{6},{7}}
=> {{1,5,6,7},{2,3,4},{8}}
=> ? = 4
[[[],[],[],[],[[],[]]]]
=> [1,1,0,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> {{1,6,8},{2},{3},{4},{5},{7}}
=> {{1},{2,3},{4,5,6,7,8}}
=> ? = 5
[[[],[],[],[],[[[]]]]]
=> [1,1,0,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> {{1,6,7,8},{2},{3},{4},{5}}
=> {{1},{2},{3},{4,5,6,7,8}}
=> ? = 5
[[[],[],[],[[],[],[]]]]
=> [1,1,0,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> {{1,5,8},{2},{3},{4},{6},{7}}
=> {{1},{2,3,4},{5,6,7,8}}
=> ? = 4
Description
The maximal size of a block of a set partition.
Mp00048: Ordered trees left-right symmetryOrdered trees
Mp00049: Ordered trees to binary tree: left brother = left childBinary trees
Mp00014: Binary trees to 132-avoiding permutationPermutations
St000308: Permutations ⟶ ℤResult quality: 86% values known / values provided: 92%distinct values known / distinct values provided: 86%
Values
[[]]
=> [[]]
=> [.,.]
=> [1] => 1
[[],[]]
=> [[],[]]
=> [[.,.],.]
=> [1,2] => 2
[[[]]]
=> [[[]]]
=> [.,[.,.]]
=> [2,1] => 1
[[],[],[]]
=> [[],[],[]]
=> [[[.,.],.],.]
=> [1,2,3] => 3
[[],[[]]]
=> [[[]],[]]
=> [[.,[.,.]],.]
=> [2,1,3] => 2
[[[]],[]]
=> [[],[[]]]
=> [[.,.],[.,.]]
=> [3,1,2] => 2
[[[],[]]]
=> [[[],[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => 2
[[[[]]]]
=> [[[[]]]]
=> [.,[.,[.,.]]]
=> [3,2,1] => 1
[[],[],[],[]]
=> [[],[],[],[]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => 4
[[],[],[[]]]
=> [[[]],[],[]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => 3
[[],[[]],[]]
=> [[],[[]],[]]
=> [[[.,.],[.,.]],.]
=> [3,1,2,4] => 3
[[],[[],[]]]
=> [[[],[]],[]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => 2
[[],[[[]]]]
=> [[[[]]],[]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => 2
[[[]],[],[]]
=> [[],[],[[]]]
=> [[[.,.],.],[.,.]]
=> [4,1,2,3] => 3
[[[]],[[]]]
=> [[[]],[[]]]
=> [[.,[.,.]],[.,.]]
=> [4,2,1,3] => 2
[[[],[]],[]]
=> [[],[[],[]]]
=> [[.,.],[[.,.],.]]
=> [3,4,1,2] => 2
[[[[]]],[]]
=> [[],[[[]]]]
=> [[.,.],[.,[.,.]]]
=> [4,3,1,2] => 2
[[[],[],[]]]
=> [[[],[],[]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => 3
[[[],[[]]]]
=> [[[[]],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2
[[[[]],[]]]
=> [[[],[[]]]]
=> [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 2
[[[[],[]]]]
=> [[[[],[]]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 2
[[[[[]]]]]
=> [[[[[]]]]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[[],[],[],[],[]]
=> [[],[],[],[],[]]
=> [[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => 5
[[],[],[],[[]]]
=> [[[]],[],[],[]]
=> [[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => 4
[[],[],[[]],[]]
=> [[],[[]],[],[]]
=> [[[[.,.],[.,.]],.],.]
=> [3,1,2,4,5] => 4
[[],[],[[],[]]]
=> [[[],[]],[],[]]
=> [[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => 3
[[],[],[[[]]]]
=> [[[[]]],[],[]]
=> [[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => 3
[[],[[]],[],[]]
=> [[],[],[[]],[]]
=> [[[[.,.],.],[.,.]],.]
=> [4,1,2,3,5] => 4
[[],[[]],[[]]]
=> [[[]],[[]],[]]
=> [[[.,[.,.]],[.,.]],.]
=> [4,2,1,3,5] => 3
[[],[[],[]],[]]
=> [[],[[],[]],[]]
=> [[[.,.],[[.,.],.]],.]
=> [3,4,1,2,5] => 3
[[],[[[]]],[]]
=> [[],[[[]]],[]]
=> [[[.,.],[.,[.,.]]],.]
=> [4,3,1,2,5] => 3
[[],[[],[],[]]]
=> [[[],[],[]],[]]
=> [[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => 3
[[],[[],[[]]]]
=> [[[[]],[]],[]]
=> [[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => 2
[[],[[[]],[]]]
=> [[[],[[]]],[]]
=> [[.,[[.,.],[.,.]]],.]
=> [4,2,3,1,5] => 2
[[],[[[],[]]]]
=> [[[[],[]]],[]]
=> [[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => 2
[[],[[[[]]]]]
=> [[[[[]]]],[]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => 2
[[[]],[],[],[]]
=> [[],[],[],[[]]]
=> [[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => 4
[[[]],[],[[]]]
=> [[[]],[],[[]]]
=> [[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => 3
[[[]],[[]],[]]
=> [[],[[]],[[]]]
=> [[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => 3
[[[]],[[],[]]]
=> [[[],[]],[[]]]
=> [[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => 2
[[[]],[[[]]]]
=> [[[[]]],[[]]]
=> [[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => 2
[[[],[]],[],[]]
=> [[],[],[[],[]]]
=> [[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => 3
[[[[]]],[],[]]
=> [[],[],[[[]]]]
=> [[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => 3
[[[],[]],[[]]]
=> [[[]],[[],[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => 2
[[[[]]],[[]]]
=> [[[]],[[[]]]]
=> [[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => 2
[[[],[],[]],[]]
=> [[],[[],[],[]]]
=> [[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => 3
[[[],[[]]],[]]
=> [[],[[[]],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => 2
[[[[]],[]],[]]
=> [[],[[],[[]]]]
=> [[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => 2
[[[[],[]]],[]]
=> [[],[[[],[]]]]
=> [[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => 2
[[[[[]]]],[]]
=> [[],[[[[]]]]]
=> [[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => 2
[[[]],[],[[],[]],[]]
=> [[],[[],[]],[],[[]]]
=> [[[[.,.],[[.,.],.]],.],[.,.]]
=> [7,3,4,1,2,5,6] => ? = 4
[[[],[]],[],[],[],[]]
=> [[],[],[],[],[[],[]]]
=> [[[[[.,.],.],.],.],[[.,.],.]]
=> [6,7,1,2,3,4,5] => ? = 5
[[[],[],[],[],[]],[]]
=> [[],[[],[],[],[],[]]]
=> [[.,.],[[[[[.,.],.],.],.],.]]
=> [3,4,5,6,7,1,2] => ? = 5
[[[],[],[[],[]],[]]]
=> [[[],[[],[]],[],[]]]
=> [.,[[[[.,.],[[.,.],.]],.],.]]
=> [4,5,2,3,6,7,1] => ? = 4
[[[]],[],[],[],[],[],[]]
=> [[],[],[],[],[],[],[[]]]
=> [[[[[[[.,.],.],.],.],.],.],[.,.]]
=> [8,1,2,3,4,5,6,7] => ? = 7
[[[]],[],[],[],[],[[]]]
=> [[[]],[],[],[],[],[[]]]
=> [[[[[[.,[.,.]],.],.],.],.],[.,.]]
=> [8,2,1,3,4,5,6,7] => ? = 6
[[[]],[],[],[],[[]],[]]
=> [[],[[]],[],[],[],[[]]]
=> [[[[[[.,.],[.,.]],.],.],.],[.,.]]
=> [8,3,1,2,4,5,6,7] => ? = 6
[[[]],[],[],[],[[],[]]]
=> [[[],[]],[],[],[],[[]]]
=> [[[[[.,[[.,.],.]],.],.],.],[.,.]]
=> [8,2,3,1,4,5,6,7] => ? = 5
[[[]],[],[],[],[[[]]]]
=> [[[[]]],[],[],[],[[]]]
=> [[[[[.,[.,[.,.]]],.],.],.],[.,.]]
=> [8,3,2,1,4,5,6,7] => ? = 5
[[[]],[],[],[[]],[],[]]
=> [[],[],[[]],[],[],[[]]]
=> [[[[[[.,.],.],[.,.]],.],.],[.,.]]
=> [8,4,1,2,3,5,6,7] => ? = 6
[[[]],[],[],[[],[],[]]]
=> [[[],[],[]],[],[],[[]]]
=> [[[[.,[[[.,.],.],.]],.],.],[.,.]]
=> [8,2,3,4,1,5,6,7] => ? = 4
[[[],[],[],[],[],[],[]]]
=> [[[],[],[],[],[],[],[]]]
=> [.,[[[[[[[.,.],.],.],.],.],.],.]]
=> [2,3,4,5,6,7,8,1] => ? = 7
[[[],[],[],[],[],[[]]]]
=> [[[[]],[],[],[],[],[]]]
=> [.,[[[[[[.,[.,.]],.],.],.],.],.]]
=> [3,2,4,5,6,7,8,1] => ? = 6
[[[],[],[],[],[[]],[]]]
=> [[[],[[]],[],[],[],[]]]
=> [.,[[[[[[.,.],[.,.]],.],.],.],.]]
=> [4,2,3,5,6,7,8,1] => ? = 6
[[[],[],[],[],[[],[]]]]
=> [[[[],[]],[],[],[],[]]]
=> [.,[[[[[.,[[.,.],.]],.],.],.],.]]
=> [3,4,2,5,6,7,8,1] => ? = 5
[[[],[],[],[],[[[]]]]]
=> [[[[[]]],[],[],[],[]]]
=> [.,[[[[[.,[.,[.,.]]],.],.],.],.]]
=> [4,3,2,5,6,7,8,1] => ? = 5
[[[],[],[],[[]],[],[]]]
=> [[[],[],[[]],[],[],[]]]
=> [.,[[[[[[.,.],.],[.,.]],.],.],.]]
=> [5,2,3,4,6,7,8,1] => ? = 6
[[[],[],[],[[],[],[]]]]
=> [[[[],[],[]],[],[],[]]]
=> [.,[[[[.,[[[.,.],.],.]],.],.],.]]
=> [3,4,5,2,6,7,8,1] => ? = 4
Description
The height of the tree associated to a permutation. A permutation can be mapped to a rooted tree with vertices $\{0,1,2,\ldots,n\}$ and root $0$ in the following way. Entries of the permutations are inserted one after the other, each child is larger than its parent and the children are in strict order from left to right. Details of the construction are found in [1]. The statistic is given by the height of this tree. See also [[St000325]] for the width of this tree.
Mp00050: Ordered trees to binary tree: right brother = right childBinary trees
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00235: Permutations descent views to invisible inversion bottomsPermutations
St000485: Permutations ⟶ ℤResult quality: 86% values known / values provided: 87%distinct values known / distinct values provided: 86%
Values
[[]]
=> [.,.]
=> [1] => [1] => ? = 1
[[],[]]
=> [.,[.,.]]
=> [2,1] => [2,1] => 2
[[[]]]
=> [[.,.],.]
=> [1,2] => [1,2] => 1
[[],[],[]]
=> [.,[.,[.,.]]]
=> [3,2,1] => [2,3,1] => 3
[[],[[]]]
=> [.,[[.,.],.]]
=> [2,3,1] => [3,2,1] => 2
[[[]],[]]
=> [[.,.],[.,.]]
=> [1,3,2] => [1,3,2] => 2
[[[],[]]]
=> [[.,[.,.]],.]
=> [2,1,3] => [2,1,3] => 2
[[[[]]]]
=> [[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 1
[[],[],[],[]]
=> [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [2,3,4,1] => 4
[[],[],[[]]]
=> [.,[.,[[.,.],.]]]
=> [3,4,2,1] => [2,4,3,1] => 3
[[],[[]],[]]
=> [.,[[.,.],[.,.]]]
=> [2,4,3,1] => [3,2,4,1] => 3
[[],[[],[]]]
=> [.,[[.,[.,.]],.]]
=> [3,2,4,1] => [4,3,2,1] => 2
[[],[[[]]]]
=> [.,[[[.,.],.],.]]
=> [2,3,4,1] => [4,2,3,1] => 2
[[[]],[],[]]
=> [[.,.],[.,[.,.]]]
=> [1,4,3,2] => [1,3,4,2] => 3
[[[]],[[]]]
=> [[.,.],[[.,.],.]]
=> [1,3,4,2] => [1,4,3,2] => 2
[[[],[]],[]]
=> [[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,1,4,3] => 2
[[[[]]],[]]
=> [[[.,.],.],[.,.]]
=> [1,2,4,3] => [1,2,4,3] => 2
[[[],[],[]]]
=> [[.,[.,[.,.]]],.]
=> [3,2,1,4] => [2,3,1,4] => 3
[[[],[[]]]]
=> [[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,2,1,4] => 2
[[[[]],[]]]
=> [[[.,.],[.,.]],.]
=> [1,3,2,4] => [1,3,2,4] => 2
[[[[],[]]]]
=> [[[.,[.,.]],.],.]
=> [2,1,3,4] => [2,1,3,4] => 2
[[[[[]]]]]
=> [[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 1
[[],[],[],[],[]]
=> [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [2,3,4,5,1] => 5
[[],[],[],[[]]]
=> [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [2,3,5,4,1] => 4
[[],[],[[]],[]]
=> [.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [2,4,3,5,1] => 4
[[],[],[[],[]]]
=> [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [2,5,4,3,1] => 3
[[],[],[[[]]]]
=> [.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [2,5,3,4,1] => 3
[[],[[]],[],[]]
=> [.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [3,2,4,5,1] => 4
[[],[[]],[[]]]
=> [.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,2,5,4,1] => 3
[[],[[],[]],[]]
=> [.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [4,3,2,5,1] => 3
[[],[[[]]],[]]
=> [.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [4,2,3,5,1] => 3
[[],[[],[],[]]]
=> [.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [5,3,4,2,1] => 3
[[],[[],[[]]]]
=> [.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [5,4,3,2,1] => 2
[[],[[[]],[]]]
=> [.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [5,2,4,3,1] => 2
[[],[[[],[]]]]
=> [.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [5,3,2,4,1] => 2
[[],[[[[]]]]]
=> [.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [5,2,3,4,1] => 2
[[[]],[],[],[]]
=> [[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [1,3,4,5,2] => 4
[[[]],[],[[]]]
=> [[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [1,3,5,4,2] => 3
[[[]],[[]],[]]
=> [[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [1,4,3,5,2] => 3
[[[]],[[],[]]]
=> [[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [1,5,4,3,2] => 2
[[[]],[[[]]]]
=> [[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [1,5,3,4,2] => 2
[[[],[]],[],[]]
=> [[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,1,4,5,3] => 3
[[[[]]],[],[]]
=> [[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [1,2,4,5,3] => 3
[[[],[]],[[]]]
=> [[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [2,1,5,4,3] => 2
[[[[]]],[[]]]
=> [[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [1,2,5,4,3] => 2
[[[],[],[]],[]]
=> [[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [2,3,1,5,4] => 3
[[[],[[]]],[]]
=> [[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2,1,5,4] => 2
[[[[]],[]],[]]
=> [[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [1,3,2,5,4] => 2
[[[[],[]]],[]]
=> [[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [2,1,3,5,4] => 2
[[[[[]]]],[]]
=> [[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [1,2,3,5,4] => 2
[[[],[],[],[]]]
=> [[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [2,3,4,1,5] => 4
[[[]],[[],[],[],[]]]
=> [[.,.],[[.,[.,[.,[.,.]]]],.]]
=> [1,6,5,4,3,7,2] => [1,7,4,5,6,3,2] => ? = 4
[[[],[]],[],[],[],[]]
=> [[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> [2,1,7,6,5,4,3] => [2,1,4,5,6,7,3] => ? = 5
[[[],[],[],[],[]],[]]
=> [[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [5,4,3,2,1,7,6] => [2,3,4,5,1,7,6] => ? = 5
[[[],[],[],[],[],[]]]
=> [[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => [2,3,4,5,6,1,7] => ? = 6
[[[],[],[],[],[[]]]]
=> [[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => [2,3,4,6,5,1,7] => ? = 5
[[[],[],[],[[]],[]]]
=> [[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [4,6,5,3,2,1,7] => [2,3,5,4,6,1,7] => ? = 5
[[[],[],[],[[],[]]]]
=> [[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => [2,3,6,5,4,1,7] => ? = 4
[[[],[],[],[[[]]]]]
=> [[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => [2,3,6,4,5,1,7] => ? = 4
[[[],[],[[]],[],[]]]
=> [[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [3,6,5,4,2,1,7] => [2,4,3,5,6,1,7] => ? = 5
[[[],[],[[]],[[]]]]
=> [[.,[.,[[.,.],[[.,.],.]]]],.]
=> [3,5,6,4,2,1,7] => [2,4,3,6,5,1,7] => ? = 4
[[[],[],[[],[]],[]]]
=> [[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [4,3,6,5,2,1,7] => [2,5,4,3,6,1,7] => ? = 4
[[[],[],[[],[],[]]]]
=> [[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => [2,6,4,5,3,1,7] => ? = 3
[[[],[],[[],[[]]]]]
=> [[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => [2,6,5,4,3,1,7] => ? = 3
[[[],[[]],[],[],[]]]
=> [[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [2,6,5,4,3,1,7] => [3,2,4,5,6,1,7] => ? = 5
[[[],[[],[],[],[]]]]
=> [[.,[[.,[.,[.,[.,.]]]],.]],.]
=> [5,4,3,2,6,1,7] => [6,3,4,5,2,1,7] => ? = 4
[[[]],[],[],[],[],[],[]]
=> [[.,.],[.,[.,[.,[.,[.,[.,.]]]]]]]
=> [1,8,7,6,5,4,3,2] => [1,3,4,5,6,7,8,2] => ? = 7
[[[]],[],[],[],[],[[]]]
=> [[.,.],[.,[.,[.,[.,[[.,.],.]]]]]]
=> [1,7,8,6,5,4,3,2] => [1,3,4,5,6,8,7,2] => ? = 6
[[[]],[],[],[],[[]],[]]
=> [[.,.],[.,[.,[.,[[.,.],[.,.]]]]]]
=> [1,6,8,7,5,4,3,2] => [1,3,4,5,7,6,8,2] => ? = 6
[[[]],[],[],[],[[],[]]]
=> [[.,.],[.,[.,[.,[[.,[.,.]],.]]]]]
=> [1,7,6,8,5,4,3,2] => [1,3,4,5,8,7,6,2] => ? = 5
[[[]],[],[],[],[[[]]]]
=> [[.,.],[.,[.,[.,[[[.,.],.],.]]]]]
=> [1,6,7,8,5,4,3,2] => [1,3,4,5,8,6,7,2] => ? = 5
[[[]],[],[],[[]],[],[]]
=> [[.,.],[.,[.,[[.,.],[.,[.,.]]]]]]
=> [1,5,8,7,6,4,3,2] => [1,3,4,6,5,7,8,2] => ? = 6
[[[]],[],[],[[],[],[]]]
=> [[.,.],[.,[.,[[.,[.,[.,.]]],.]]]]
=> [1,7,6,5,8,4,3,2] => [1,3,4,8,6,7,5,2] => ? = 4
[[[],[],[],[],[],[],[]]]
=> [[.,[.,[.,[.,[.,[.,[.,.]]]]]]],.]
=> [7,6,5,4,3,2,1,8] => [2,3,4,5,6,7,1,8] => ? = 7
[[[],[],[],[],[],[[]]]]
=> [[.,[.,[.,[.,[.,[[.,.],.]]]]]],.]
=> [6,7,5,4,3,2,1,8] => [2,3,4,5,7,6,1,8] => ? = 6
[[[],[],[],[],[[]],[]]]
=> [[.,[.,[.,[.,[[.,.],[.,.]]]]]],.]
=> [5,7,6,4,3,2,1,8] => [2,3,4,6,5,7,1,8] => ? = 6
[[[],[],[],[],[[],[]]]]
=> [[.,[.,[.,[.,[[.,[.,.]],.]]]]],.]
=> [6,5,7,4,3,2,1,8] => [2,3,4,7,6,5,1,8] => ? = 5
[[[],[],[],[],[[[]]]]]
=> [[.,[.,[.,[.,[[[.,.],.],.]]]]],.]
=> [5,6,7,4,3,2,1,8] => [2,3,4,7,5,6,1,8] => ? = 5
[[[],[],[],[[]],[],[]]]
=> [[.,[.,[.,[[.,.],[.,[.,.]]]]]],.]
=> [4,7,6,5,3,2,1,8] => [2,3,5,4,6,7,1,8] => ? = 6
[[[],[],[],[[],[],[]]]]
=> [[.,[.,[.,[[.,[.,[.,.]]],.]]]],.]
=> [6,5,4,7,3,2,1,8] => [2,3,7,5,6,4,1,8] => ? = 4
Description
The length of the longest cycle of a permutation.
St000328: Ordered trees ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 86%
Values
[[]]
=> 1
[[],[]]
=> 2
[[[]]]
=> 1
[[],[],[]]
=> 3
[[],[[]]]
=> 2
[[[]],[]]
=> 2
[[[],[]]]
=> 2
[[[[]]]]
=> 1
[[],[],[],[]]
=> 4
[[],[],[[]]]
=> 3
[[],[[]],[]]
=> 3
[[],[[],[]]]
=> 2
[[],[[[]]]]
=> 2
[[[]],[],[]]
=> 3
[[[]],[[]]]
=> 2
[[[],[]],[]]
=> 2
[[[[]]],[]]
=> 2
[[[],[],[]]]
=> 3
[[[],[[]]]]
=> 2
[[[[]],[]]]
=> 2
[[[[],[]]]]
=> 2
[[[[[]]]]]
=> 1
[[],[],[],[],[]]
=> 5
[[],[],[],[[]]]
=> 4
[[],[],[[]],[]]
=> 4
[[],[],[[],[]]]
=> 3
[[],[],[[[]]]]
=> 3
[[],[[]],[],[]]
=> 4
[[],[[]],[[]]]
=> 3
[[],[[],[]],[]]
=> 3
[[],[[[]]],[]]
=> 3
[[],[[],[],[]]]
=> 3
[[],[[],[[]]]]
=> 2
[[],[[[]],[]]]
=> 2
[[],[[[],[]]]]
=> 2
[[],[[[[]]]]]
=> 2
[[[]],[],[],[]]
=> 4
[[[]],[],[[]]]
=> 3
[[[]],[[]],[]]
=> 3
[[[]],[[],[]]]
=> 2
[[[]],[[[]]]]
=> 2
[[[],[]],[],[]]
=> 3
[[[[]]],[],[]]
=> 3
[[[],[]],[[]]]
=> 2
[[[[]]],[[]]]
=> 2
[[[],[],[]],[]]
=> 3
[[[],[[]]],[]]
=> 2
[[[[]],[]],[]]
=> 2
[[[[],[]]],[]]
=> 2
[[[[[]]]],[]]
=> 2
[[[]],[],[],[],[],[]]
=> ? = 6
[[[]],[],[],[],[[]]]
=> ? = 5
[[[]],[],[],[[]],[]]
=> ? = 5
[[[]],[],[],[[],[]]]
=> ? = 4
[[[]],[],[],[[[]]]]
=> ? = 4
[[[]],[],[[]],[],[]]
=> ? = 5
[[[]],[],[[]],[[]]]
=> ? = 4
[[[]],[],[[],[]],[]]
=> ? = 4
[[[]],[],[[],[],[]]]
=> ? = 3
[[[]],[],[[],[[]]]]
=> ? = 3
[[[]],[[]],[],[],[]]
=> ? = 5
[[[]],[[],[],[],[]]]
=> ? = 4
[[[],[]],[],[],[],[]]
=> ? = 5
[[[],[],[],[],[]],[]]
=> ? = 5
[[[],[],[],[],[],[]]]
=> ? = 6
[[[],[],[],[],[[]]]]
=> ? = 5
[[[],[],[],[[]],[]]]
=> ? = 5
[[[],[],[],[[],[]]]]
=> ? = 4
[[[],[],[],[[[]]]]]
=> ? = 4
[[[],[],[[]],[],[]]]
=> ? = 5
[[[],[],[[]],[[]]]]
=> ? = 4
[[[],[],[[],[]],[]]]
=> ? = 4
[[[],[],[[],[],[]]]]
=> ? = 3
[[[],[],[[],[[]]]]]
=> ? = 3
[[[],[[]],[],[],[]]]
=> ? = 5
[[[],[[],[],[],[]]]]
=> ? = 4
[[[]],[],[],[],[],[],[]]
=> ? = 7
[[[]],[],[],[],[],[[]]]
=> ? = 6
[[[]],[],[],[],[[]],[]]
=> ? = 6
[[[]],[],[],[],[[],[]]]
=> ? = 5
[[[]],[],[],[],[[[]]]]
=> ? = 5
[[[]],[],[],[[]],[],[]]
=> ? = 6
[[[]],[],[],[[],[],[]]]
=> ? = 4
[[[],[],[],[],[],[],[]]]
=> ? = 7
[[[],[],[],[],[],[[]]]]
=> ? = 6
[[[],[],[],[],[[]],[]]]
=> ? = 6
[[[],[],[],[],[[],[]]]]
=> ? = 5
[[[],[],[],[],[[[]]]]]
=> ? = 5
[[[],[],[],[[]],[],[]]]
=> ? = 6
[[[],[],[],[[],[],[]]]]
=> ? = 4
Description
The maximum number of child nodes in a tree.
Mp00047: Ordered trees to posetPosets
St000846: Posets ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 86%
Values
[[]]
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> 2
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> 4
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 3
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> 2
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> 2
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> 2
[[[]],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ? = 6
[[[]],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 5
[[[]],[],[],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 5
[[[]],[],[],[[],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 4
[[[]],[],[],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ? = 4
[[[]],[],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 5
[[[]],[],[[]],[[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ? = 4
[[[]],[],[[],[]],[]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 4
[[[]],[],[[],[],[]]]
=> ([(0,7),(1,6),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 3
[[[]],[],[[],[[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,7),(5,6),(6,7)],8)
=> ? = 3
[[[]],[[]],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ? = 5
[[[]],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(7,6)],8)
=> ? = 4
[[[],[]],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ? = 5
[[[],[],[],[],[]],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ? = 5
[[[],[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ? = 6
[[[],[],[],[],[[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ? = 5
[[[],[],[],[[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ? = 5
[[[],[],[],[[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(6,7),(7,5)],8)
=> ? = 4
[[[],[],[],[[[]]]]]
=> ([(0,7),(1,7),(2,7),(3,4),(4,6),(6,7),(7,5)],8)
=> ? = 4
[[[],[],[[]],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ? = 5
[[[],[],[[]],[[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,7),(7,6)],8)
=> ? = 4
[[[],[],[[],[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(6,7),(7,5)],8)
=> ? = 4
[[[],[],[[],[],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,6),(6,7),(7,5)],8)
=> ? = 3
[[[],[],[[],[[]]]]]
=> ([(0,7),(1,7),(2,6),(3,5),(5,6),(6,7),(7,4)],8)
=> ? = 3
[[[],[[]],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ? = 5
[[[],[[],[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(6,5),(7,6)],8)
=> ? = 4
[[[]],[],[],[],[],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ? = 7
[[[]],[],[],[],[],[[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[[]],[],[],[],[[]],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[[]],[],[],[],[[],[]]]
=> ([(0,8),(1,8),(2,8),(3,7),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 5
[[[]],[],[],[],[[[]]]]
=> ([(0,8),(1,8),(2,8),(3,5),(4,6),(5,7),(6,8),(7,8)],9)
=> ? = 5
[[[]],[],[],[[]],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 6
[[[]],[],[],[[],[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,7),(5,6),(6,8),(7,8)],9)
=> ? = 4
[[[],[],[],[],[],[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(8,7)],9)
=> ? = 7
[[[],[],[],[],[],[[]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ? = 6
[[[],[],[],[],[[]],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ? = 6
[[[],[],[],[],[[],[]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,7),(7,8),(8,6)],9)
=> ? = 5
[[[],[],[],[],[[[]]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,5),(5,7),(7,8),(8,6)],9)
=> ? = 5
[[[],[],[],[[]],[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ? = 6
[[[],[],[],[[],[],[]]]]
=> ([(0,8),(1,8),(2,8),(3,7),(4,7),(5,7),(7,8),(8,6)],9)
=> ? = 4
Description
The maximal number of elements covering an element of a poset.
Mp00047: Ordered trees to posetPosets
Mp00125: Posets dual posetPosets
St000845: Posets ⟶ ℤResult quality: 83% values known / values provided: 83%distinct values known / distinct values provided: 86%
Values
[[]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[[],[]]
=> ([(0,2),(1,2)],3)
=> ([(0,1),(0,2)],3)
=> 2
[[[]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1
[[],[],[]]
=> ([(0,3),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3)],4)
=> 3
[[],[[]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[]],[]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,2),(0,3),(3,1)],4)
=> 2
[[[],[]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(3,1),(3,2)],4)
=> 2
[[[[]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1
[[],[],[],[]]
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4)],5)
=> 4
[[],[],[[]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[],[[]],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[],[[],[]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
[[],[[[]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[]],[],[]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,2),(0,3),(0,4),(4,1)],5)
=> 3
[[[]],[[]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(3,2),(4,1)],5)
=> 2
[[[],[]],[]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,3),(0,4),(4,1),(4,2)],5)
=> 2
[[[[]]],[]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(0,4),(3,1),(4,3)],5)
=> 2
[[[],[],[]]]
=> ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([(0,4),(4,1),(4,2),(4,3)],5)
=> 3
[[[],[[]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[]],[]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,4),(3,2),(4,1),(4,3)],5)
=> 2
[[[[],[]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([(0,3),(3,4),(4,1),(4,2)],5)
=> 2
[[[[[]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1
[[],[],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5)],6)
=> 5
[[],[],[],[[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[],[[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[],[[],[]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[],[],[[[]]]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[],[[]],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[],[[]],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[],[[],[]],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[],[[[]]],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[],[[],[],[]]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 3
[[],[[],[[]]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[],[[[]],[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[],[[[],[]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 2
[[],[[[[]]]]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[[]],[],[],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(5,1)],6)
=> 4
[[[]],[],[[]]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[[]],[[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(4,2),(5,1)],6)
=> 3
[[[]],[[],[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 2
[[[]],[[[]]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[]],[],[]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(5,1),(5,2)],6)
=> 3
[[[[]]],[],[]]
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ([(0,2),(0,3),(0,5),(4,1),(5,4)],6)
=> 3
[[[],[]],[[]]]
=> ([(0,4),(1,4),(2,3),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(4,3),(5,1),(5,2)],6)
=> 2
[[[[]]],[[]]]
=> ([(0,3),(1,4),(2,5),(3,5),(4,2)],6)
=> ([(0,4),(0,5),(3,2),(4,3),(5,1)],6)
=> 2
[[[],[],[]],[]]
=> ([(0,5),(1,5),(2,5),(3,4),(5,4)],6)
=> ([(0,4),(0,5),(5,1),(5,2),(5,3)],6)
=> 3
[[[],[[]]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[[[]],[]],[]]
=> ([(0,5),(1,4),(2,3),(3,5),(5,4)],6)
=> ([(0,3),(0,5),(4,2),(5,1),(5,4)],6)
=> 2
[[[[],[]]],[]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([(0,3),(0,4),(4,5),(5,1),(5,2)],6)
=> 2
[[[[[]]]],[]]
=> ([(0,5),(1,4),(2,5),(3,2),(4,3)],6)
=> ([(0,2),(0,5),(3,4),(4,1),(5,3)],6)
=> 2
[[[]],[],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(6,7)],8)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(7,1)],8)
=> ? = 6
[[[]],[],[],[],[[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(6,2),(7,1)],8)
=> ? = 5
[[[]],[],[],[[]],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(6,2),(7,1)],8)
=> ? = 5
[[[]],[],[],[[],[]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[[]],[],[],[[[]]]]
=> ([(0,7),(1,7),(2,4),(3,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,6),(0,7),(5,1),(6,2),(7,5)],8)
=> ? = 4
[[[]],[],[[]],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(6,2),(7,1)],8)
=> ? = 5
[[[]],[],[[]],[[]]]
=> ([(0,7),(1,6),(2,5),(3,4),(4,7),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[[]],[],[[],[]],[]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 4
[[[]],[],[[],[],[]]]
=> ([(0,7),(1,6),(2,6),(3,6),(4,5),(5,7),(6,7)],8)
=> ?
=> ? = 3
[[[]],[],[[],[[]]]]
=> ([(0,7),(1,6),(2,4),(3,5),(4,7),(5,6),(6,7)],8)
=> ?
=> ? = 3
[[[]],[[]],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,5),(5,7),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(6,2),(7,1)],8)
=> ? = 5
[[[]],[[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,6),(7,6)],8)
=> ?
=> ? = 4
[[[],[]],[],[],[],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(5,6),(6,7)],8)
=> ([(0,3),(0,4),(0,5),(0,6),(0,7),(7,1),(7,2)],8)
=> ? = 5
[[[],[],[],[],[]],[]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,6),(7,6)],8)
=> ([(0,6),(0,7),(7,1),(7,2),(7,3),(7,4),(7,5)],8)
=> ? = 5
[[[],[],[],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(7,6)],8)
=> ([(0,7),(7,1),(7,2),(7,3),(7,4),(7,5),(7,6)],8)
=> ? = 6
[[[],[],[],[],[[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,7),(6,5),(7,1),(7,2),(7,3),(7,4),(7,6)],8)
=> ? = 5
[[[],[],[],[[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,7),(6,5),(7,1),(7,2),(7,3),(7,4),(7,6)],8)
=> ? = 5
[[[],[],[],[[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(6,7),(7,5)],8)
=> ([(0,7),(6,4),(6,5),(7,1),(7,2),(7,3),(7,6)],8)
=> ? = 4
[[[],[],[],[[[]]]]]
=> ([(0,7),(1,7),(2,7),(3,4),(4,6),(6,7),(7,5)],8)
=> ([(0,7),(5,6),(6,4),(7,1),(7,2),(7,3),(7,5)],8)
=> ? = 4
[[[],[],[[]],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,7),(6,5),(7,1),(7,2),(7,3),(7,4),(7,6)],8)
=> ? = 5
[[[],[],[[]],[[]]]]
=> ([(0,7),(1,7),(2,5),(3,4),(4,7),(5,7),(7,6)],8)
=> ([(0,7),(5,4),(6,3),(7,1),(7,2),(7,5),(7,6)],8)
=> ? = 4
[[[],[],[[],[]],[]]]
=> ([(0,7),(1,7),(2,7),(3,6),(4,6),(6,7),(7,5)],8)
=> ([(0,7),(6,4),(6,5),(7,1),(7,2),(7,3),(7,6)],8)
=> ? = 4
[[[],[],[[],[],[]]]]
=> ([(0,7),(1,7),(2,6),(3,6),(4,6),(6,7),(7,5)],8)
=> ([(0,7),(6,3),(6,4),(6,5),(7,1),(7,2),(7,6)],8)
=> ? = 3
[[[],[],[[],[[]]]]]
=> ([(0,7),(1,7),(2,6),(3,5),(5,6),(6,7),(7,4)],8)
=> ([(0,7),(5,4),(6,3),(6,5),(7,1),(7,2),(7,6)],8)
=> ? = 3
[[[],[[]],[],[],[]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,5),(5,7),(7,6)],8)
=> ([(0,7),(6,5),(7,1),(7,2),(7,3),(7,4),(7,6)],8)
=> ? = 5
[[[],[[],[],[],[]]]]
=> ([(0,7),(1,7),(2,7),(3,7),(4,6),(6,5),(7,6)],8)
=> ([(0,6),(6,5),(6,7),(7,1),(7,2),(7,3),(7,4)],8)
=> ? = 4
[[[]],[],[],[],[],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,7),(7,8)],9)
=> ([(0,2),(0,3),(0,4),(0,5),(0,6),(0,7),(0,8),(8,1)],9)
=> ? = 7
[[[]],[],[],[],[],[[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ? = 6
[[[]],[],[],[],[[]],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ? = 6
[[[]],[],[],[],[[],[]]]
=> ([(0,8),(1,8),(2,8),(3,7),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ? = 5
[[[]],[],[],[],[[[]]]]
=> ([(0,8),(1,8),(2,8),(3,5),(4,6),(5,7),(6,8),(7,8)],9)
=> ?
=> ? = 5
[[[]],[],[],[[]],[],[]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ? = 6
[[[]],[],[],[[],[],[]]]
=> ([(0,8),(1,8),(2,7),(3,7),(4,7),(5,6),(6,8),(7,8)],9)
=> ?
=> ? = 4
[[[],[],[],[],[],[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(8,7)],9)
=> ([(0,8),(8,1),(8,2),(8,3),(8,4),(8,5),(8,6),(8,7)],9)
=> ? = 7
[[[],[],[],[],[],[[]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ([(0,8),(7,6),(8,1),(8,2),(8,3),(8,4),(8,5),(8,7)],9)
=> ? = 6
[[[],[],[],[],[[]],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ([(0,8),(7,6),(8,1),(8,2),(8,3),(8,4),(8,5),(8,7)],9)
=> ? = 6
[[[],[],[],[],[[],[]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,7),(5,7),(7,8),(8,6)],9)
=> ([(0,8),(7,5),(7,6),(8,1),(8,2),(8,3),(8,4),(8,7)],9)
=> ? = 5
[[[],[],[],[],[[[]]]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,5),(5,7),(7,8),(8,6)],9)
=> ([(0,8),(6,7),(7,5),(8,1),(8,2),(8,3),(8,4),(8,6)],9)
=> ? = 5
[[[],[],[],[[]],[],[]]]
=> ([(0,8),(1,8),(2,8),(3,8),(4,8),(5,6),(6,8),(8,7)],9)
=> ([(0,8),(7,6),(8,1),(8,2),(8,3),(8,4),(8,5),(8,7)],9)
=> ? = 6
[[[],[],[],[[],[],[]]]]
=> ([(0,8),(1,8),(2,8),(3,7),(4,7),(5,7),(7,8),(8,6)],9)
=> ?
=> ? = 4
Description
The maximal number of elements covered by an element in a poset.
The following 6 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001235The global dimension of the corresponding Comp-Nakayama algebra. St001239The largest vector space dimension of the double dual of a simple module in the corresponding Nakayama algebra. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001330The hat guessing number of a graph. St000454The largest eigenvalue of a graph if it is integral. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path.