searching the database
Your data matches 39 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001388
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
St001388: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 1
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 1
[2,4,1,3] => 3
[2,4,3,1] => 2
[3,1,2,4] => 2
[3,1,4,2] => 3
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 2
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 1
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 2
[1,3,2,5,4] => 2
[1,3,4,2,5] => 3
[1,3,4,5,2] => 2
[1,3,5,2,4] => 4
[1,3,5,4,2] => 3
[1,4,2,3,5] => 3
[1,4,2,5,3] => 4
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
Description
The number of non-attacking neighbors of a permutation.
For a permutation $\sigma$, the indices $i$ and $i+1$ are attacking if $|\sigma(i)-\sigma(i+1)| = 1$.
Visually, this is, for $\sigma$ considered as a placement of kings on a chessboard, if the kings placed in columns $i$ and $i+1$ are non-attacking.
Matching statistic: St000098
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 1 = 0 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2 = 1 + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4 = 3 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4 = 3 + 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 1 = 0 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2 + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2 + 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4 + 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2 + 1
[3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[3,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3 + 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 1 = 0 + 1
Description
The chromatic number of a graph.
The minimal number of colors needed to color the vertices of the graph such that no two vertices which share an edge have the same color.
Matching statistic: St000093
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> ([],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 0 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4 = 3 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ([(0,4),(0,5),(0,6),(0,7),(1,4),(1,5),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 4 = 3 + 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 3 = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,7),(0,9),(0,10),(0,11),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,7),(0,9),(0,10),(0,11),(1,5),(1,6),(1,8),(1,9),(1,10),(1,11),(2,4),(2,6),(2,8),(2,9),(2,10),(2,11),(3,4),(3,5),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,2),(1,3),(1,7),(1,8),(1,9),(1,10),(2,6),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,5),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ([(0,4),(0,5),(0,7),(0,8),(0,9),(1,2),(1,3),(1,6),(1,7),(1,8),(1,9),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ([(0,3),(0,6),(0,7),(0,8),(0,9),(1,2),(1,4),(1,6),(1,7),(1,8),(1,9),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,5),(3,7),(3,8),(3,9),(4,5),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,6),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,5),(3,7),(3,8),(4,6),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ([(0,6),(0,8),(0,9),(0,10),(1,4),(1,5),(1,7),(1,9),(1,10),(2,5),(2,6),(2,7),(2,8),(2,9),(2,10),(3,4),(3,6),(3,7),(3,8),(3,9),(3,10),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ([(0,3),(0,4),(0,11),(0,12),(0,13),(1,6),(1,7),(1,10),(1,11),(1,12),(1,13),(2,8),(2,9),(2,10),(2,11),(2,12),(2,13),(3,5),(3,9),(3,10),(3,11),(3,12),(3,13),(4,5),(4,8),(4,10),(4,11),(4,12),(4,13),(5,6),(5,7),(5,10),(5,11),(5,12),(5,13),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,5),(1,6),(1,10),(1,11),(1,12),(2,3),(2,8),(2,9),(2,10),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ([(0,4),(0,6),(0,9),(0,10),(0,11),(1,3),(1,5),(1,8),(1,10),(1,11),(2,5),(2,6),(2,8),(2,9),(2,10),(2,11),(3,7),(3,8),(3,9),(3,10),(3,11),(4,7),(4,8),(4,9),(4,10),(4,11),(5,7),(5,8),(5,9),(5,10),(5,11),(6,7),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3 + 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,5),(1,6),(1,10),(1,11),(1,12),(2,3),(2,8),(2,9),(2,10),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ([(0,8),(0,9),(0,12),(0,13),(0,14),(1,6),(1,7),(1,11),(1,13),(1,14),(2,7),(2,9),(2,10),(2,11),(2,12),(2,13),(2,14),(3,7),(3,8),(3,10),(3,11),(3,12),(3,13),(3,14),(4,6),(4,8),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(6,11),(6,12),(6,13),(6,14),(7,11),(7,12),(7,13),(7,14),(8,11),(8,12),(8,13),(8,14),(9,11),(9,12),(9,13),(9,14),(10,11),(10,12),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,14)],15)
=> ? = 4 + 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,6),(0,7),(0,9),(0,11),(0,12),(1,4),(1,8),(1,10),(1,11),(1,12),(2,7),(2,8),(2,9),(2,10),(2,11),(2,12),(3,6),(3,8),(3,9),(3,10),(3,11),(3,12),(4,5),(4,9),(4,10),(4,11),(4,12),(5,6),(5,7),(5,9),(5,10),(5,11),(5,12),(6,9),(6,10),(6,11),(6,12),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ([(0,5),(0,7),(0,8),(0,9),(1,4),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,7),(2,8),(2,9),(3,4),(3,6),(3,7),(3,8),(3,9),(4,6),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9)],10)
=> ? = 2 + 1
[3,1,2,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ([(0,5),(0,6),(0,8),(0,9),(0,10),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),(2,7),(2,8),(2,9),(2,10),(3,5),(3,7),(3,8),(3,9),(3,10),(4,6),(4,7),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2 + 1
[3,1,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ([(0,7),(0,9),(0,10),(0,11),(0,12),(0,13),(1,6),(1,8),(1,10),(1,11),(1,12),(1,13),(2,5),(2,8),(2,10),(2,11),(2,12),(2,13),(3,4),(3,8),(3,10),(3,11),(3,12),(3,13),(4,7),(4,9),(4,10),(4,11),(4,12),(4,13),(5,7),(5,9),(5,10),(5,11),(5,12),(5,13),(6,7),(6,9),(6,10),(6,11),(6,12),(6,13),(7,11),(7,12),(7,13),(8,9),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[3,1,4,5,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,2),(1,3),(1,9),(1,10),(1,11),(1,12),(2,8),(2,9),(2,10),(2,11),(2,12),(3,4),(3,6),(3,10),(3,11),(3,12),(4,7),(4,9),(4,10),(4,11),(4,12),(5,6),(5,8),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[3,1,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ([(0,3),(0,4),(0,11),(0,12),(0,13),(1,6),(1,7),(1,10),(1,11),(1,12),(1,13),(2,8),(2,9),(2,10),(2,11),(2,12),(2,13),(3,5),(3,9),(3,10),(3,11),(3,12),(3,13),(4,5),(4,8),(4,10),(4,11),(4,12),(4,13),(5,6),(5,7),(5,10),(5,11),(5,12),(5,13),(6,8),(6,9),(6,10),(6,11),(6,12),(6,13),(7,8),(7,9),(7,10),(7,11),(7,12),(7,13),(8,10),(8,11),(8,12),(8,13),(9,10),(9,11),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4 + 1
[3,1,5,4,2] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ([(0,8),(0,9),(0,10),(0,11),(0,12),(1,5),(1,6),(1,10),(1,11),(1,12),(2,3),(2,8),(2,9),(2,10),(2,11),(2,12),(3,7),(3,9),(3,10),(3,11),(3,12),(4,6),(4,8),(4,9),(4,10),(4,11),(4,12),(5,7),(5,9),(5,10),(5,11),(5,12),(6,7),(6,9),(6,10),(6,11),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(8,12),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3 + 1
[3,2,1,4,5] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ([(0,5),(0,6),(0,7),(0,8),(1,3),(1,4),(1,7),(1,8),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(3,4),(3,6),(3,7),(3,8),(4,5),(4,7),(4,8),(5,6),(5,7),(5,8),(6,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[4,3,2,1,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[4,5,3,2,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,1,2,3,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,1,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ([(0,3),(0,5),(0,6),(0,7),(1,2),(1,4),(1,6),(1,7),(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> 2 = 1 + 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 0 + 1
Description
The cardinality of a maximal independent set of vertices of a graph.
An independent set of a graph is a set of pairwise non-adjacent vertices. A maximum independent set is an independent set of maximum cardinality. This statistic is also called the independence number or stability number $\alpha(G)$ of $G$.
Matching statistic: St000845
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00209: Permutations —pattern poset⟶ Posets
St000845: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
St000845: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 + 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 3 + 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 3 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 1 + 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 4 + 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 3 + 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 3 + 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 4 + 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The maximal number of elements covered by an element in a poset.
Matching statistic: St000846
(load all 9 compositions to match this statistic)
(load all 9 compositions to match this statistic)
Mp00209: Permutations —pattern poset⟶ Posets
St000846: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
St000846: Posets ⟶ ℤResult quality: 4% ●values known / values provided: 4%●distinct values known / distinct values provided: 50%
Values
[1,2] => ([(0,1)],2)
=> 1 = 0 + 1
[2,1] => ([(0,1)],2)
=> 1 = 0 + 1
[1,2,3] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,1] => ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 + 1
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ? = 3 + 1
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> 2 = 1 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> 3 = 2 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 1 + 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 3 + 1
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ? = 3 + 1
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ? = 2 + 1
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ? = 2 + 1
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ? = 1 + 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ? = 2 + 1
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ? = 4 + 1
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ? = 4 + 1
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 3 + 1
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ? = 3 + 1
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ? = 3 + 1
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ? = 4 + 1
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ? = 3 + 1
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ? = 3 + 1
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ? = 2 + 1
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
Description
The maximal number of elements covering an element of a poset.
Matching statistic: St000272
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
Description
The treewidth of a graph.
A graph has treewidth zero if and only if it has no edges. A connected graph has treewidth at most one if and only if it is a tree. A connected graph has treewidth at most two if and only if it is a series-parallel graph.
Matching statistic: St000536
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
Description
The pathwidth of a graph.
Matching statistic: St000537
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
Description
The cutwidth of a graph.
This is the minimum possible width of a linear ordering of its vertices, where the width of an ordering $\sigma$ is the maximum, among all the prefixes of $\sigma$, of the number of edges that have exactly one vertex in a prefix.
Matching statistic: St001270
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
Description
The bandwidth of a graph.
The bandwidth of a graph is the smallest number $k$ such that the vertices of the graph can be
ordered as $v_1,\dots,v_n$ with $k \cdot d(v_i,v_j) \geq |i-j|$.
We adopt the convention that the singleton graph has bandwidth $0$, consistent with the bandwith of the complete graph on $n$ vertices having bandwidth $n-1$, but in contrast to any path graph on more than one vertex having bandwidth $1$. The bandwidth of a disconnected graph is the maximum of the bandwidths of the connected components.
Matching statistic: St001277
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([(0,1)],2)
=> ([],2)
=> 0
[2,1] => ([(0,1)],2)
=> ([],2)
=> 0
[1,2,3] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,3,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,1,3] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[2,3,1] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,1,2] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(2,3)],4)
=> 1
[3,2,1] => ([(0,2),(2,1)],3)
=> ([],3)
=> 0
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,4,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[1,3,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,3,4,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,2,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[1,4,3,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,3,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,1,4,3] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[2,3,1,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[2,3,4,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[2,4,1,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[2,4,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,2,4] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,1,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,7),(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(6,5),(7,5)],8)
=> ([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8)
=> ? = 3
[3,2,1,4] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[3,2,4,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[3,4,1,2] => ([(0,1),(0,2),(1,4),(1,5),(2,4),(2,5),(4,3),(5,3)],6)
=> ([(2,5),(3,4)],6)
=> 1
[3,4,2,1] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,2,3] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,1,3,2] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,1,3] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,2,3,1] => ([(0,1),(0,2),(0,3),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(6,5)],7)
=> ([(2,5),(3,4),(3,6),(4,6),(5,6)],7)
=> 2
[4,3,1,2] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> ([(2,5),(3,4),(4,5)],6)
=> 1
[4,3,2,1] => ([(0,3),(2,1),(3,2)],4)
=> ([],4)
=> 0
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,5,4] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[1,2,4,3,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,4,5,3] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,2,5,4,3] => ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ([(2,5),(2,8),(3,4),(3,8),(4,7),(5,7),(6,7),(6,8),(7,8)],9)
=> ? = 1
[1,3,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,2,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[1,3,4,2,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,3,4,5,2] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,3,5,2,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,3,5,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,3,5] => ([(0,1),(0,2),(0,3),(0,4),(1,10),(2,6),(2,7),(2,10),(3,5),(3,7),(3,10),(4,5),(4,6),(4,10),(5,9),(5,11),(6,9),(6,11),(7,9),(7,11),(9,8),(10,11),(11,8)],12)
=> ([(2,3),(3,7),(3,11),(4,5),(4,6),(4,10),(4,11),(5,6),(5,9),(5,11),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,10),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,4,2,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[1,4,3,2,5] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,4,5,2,3] => ([(0,1),(0,2),(0,3),(1,5),(1,6),(2,6),(2,7),(2,8),(3,5),(3,7),(3,8),(5,9),(5,10),(6,9),(6,10),(7,10),(8,9),(8,10),(9,4),(10,4)],11)
=> ([(2,3),(3,10),(4,5),(4,8),(4,9),(5,7),(5,9),(6,7),(6,8),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,2,3,4] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[1,5,2,4,3] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,3,4,2] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[1,5,4,3,2] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,4,5] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,1,3,5,4] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,3),(3,9),(4,5),(4,7),(4,8),(5,6),(5,8),(6,7),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,1,4,3,5] => ([(0,1),(0,2),(0,3),(1,7),(1,8),(2,5),(2,8),(3,5),(3,7),(3,8),(5,9),(6,4),(7,6),(7,9),(8,6),(8,9),(9,4)],10)
=> ([(2,5),(3,6),(3,9),(4,7),(4,8),(5,9),(6,8),(6,9),(7,8),(7,9)],10)
=> ? = 2
[2,1,4,5,3] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,3,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,1,5,4,3] => ([(0,3),(0,4),(1,8),(2,7),(2,8),(3,1),(3,5),(4,2),(4,5),(5,7),(5,8),(7,6),(8,6)],9)
=> ([(2,6),(3,4),(3,8),(4,7),(5,7),(5,8),(6,8),(7,8)],9)
=> ? = 1
[2,3,1,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,1,5,4] => ([(0,2),(0,3),(0,4),(1,9),(1,10),(2,6),(2,7),(3,5),(3,6),(4,1),(4,5),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(3,10),(4,6),(4,7),(4,8),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(7,9),(7,10),(8,9),(8,10),(9,10)],11)
=> ? = 2
[2,3,4,1,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[2,3,4,5,1] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(2,7),(3,6),(4,5),(4,6),(5,7),(6,7)],8)
=> ? = 1
[2,3,5,1,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,3,5,4,1] => ([(0,2),(0,3),(0,4),(1,9),(2,5),(2,7),(3,5),(3,6),(4,1),(4,6),(4,7),(5,10),(6,9),(6,10),(7,9),(7,10),(9,8),(10,8)],11)
=> ([(2,3),(2,10),(3,9),(4,7),(4,8),(4,9),(5,6),(5,8),(5,9),(5,10),(6,7),(6,9),(6,10),(7,8),(7,10),(8,10),(9,10)],11)
=> ? = 2
[2,4,1,3,5] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,12),(2,8),(2,10),(2,12),(3,7),(3,10),(3,12),(4,6),(4,10),(4,12),(5,6),(5,7),(5,8),(5,12),(6,11),(6,13),(7,11),(7,13),(8,11),(8,13),(10,13),(11,9),(12,11),(12,13),(13,9)],14)
=> ([(2,3),(3,9),(4,9),(4,11),(4,12),(4,13),(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,10),(6,12),(6,13),(7,8),(7,10),(7,11),(7,13),(8,10),(8,11),(8,12),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,1,5,3] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,10),(1,11),(2,6),(2,9),(2,11),(3,6),(3,9),(3,10),(4,7),(4,9),(4,10),(4,11),(5,7),(5,9),(5,10),(5,11),(6,13),(7,12),(7,13),(9,12),(9,13),(10,12),(10,13),(11,12),(11,13),(12,8),(13,8)],14)
=> ([(2,3),(3,13),(4,5),(4,6),(4,11),(4,12),(4,13),(5,6),(5,10),(5,11),(5,13),(6,9),(6,11),(6,13),(7,8),(7,9),(7,10),(7,12),(7,13),(8,9),(8,10),(8,12),(8,13),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12),(11,13),(12,13)],14)
=> ? = 4
[2,4,3,1,5] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,3,5,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,4,5,3,1] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(1,11),(2,5),(2,11),(3,5),(3,7),(3,11),(4,6),(4,7),(4,11),(5,9),(6,10),(7,9),(7,10),(9,8),(10,8),(11,9),(11,10)],12)
=> ([(2,3),(2,11),(3,10),(4,9),(4,10),(4,11),(5,6),(5,7),(5,8),(5,10),(6,7),(6,8),(6,11),(7,8),(7,9),(7,10),(8,9),(8,11),(9,10),(9,11),(10,11)],12)
=> ? = 3
[2,5,1,3,4] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,1,4,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,7),(2,10),(3,6),(3,10),(4,6),(4,8),(4,10),(5,1),(5,7),(5,8),(5,10),(6,12),(7,11),(7,12),(8,11),(8,12),(10,11),(10,12),(11,9),(12,9)],13)
=> ([(2,3),(3,12),(4,7),(4,9),(4,11),(4,12),(5,6),(5,8),(5,10),(5,12),(6,8),(6,9),(6,10),(6,11),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,11),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,3,1,4] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,9),(1,10),(1,11),(1,12),(2,7),(2,11),(2,12),(3,7),(3,9),(3,10),(4,6),(4,10),(4,12),(5,6),(5,9),(5,11),(6,14),(7,13),(9,13),(9,14),(10,13),(10,14),(11,13),(11,14),(12,13),(12,14),(13,8),(14,8)],15)
=> ([(2,3),(2,14),(3,13),(4,9),(4,10),(4,11),(4,12),(4,13),(4,14),(5,6),(5,7),(5,8),(5,10),(5,12),(5,13),(5,14),(6,7),(6,8),(6,10),(6,11),(6,13),(6,14),(7,8),(7,9),(7,11),(7,13),(7,14),(8,9),(8,12),(8,13),(8,14),(9,10),(9,11),(9,12),(9,13),(10,11),(10,12),(10,13),(11,12),(11,14),(12,14),(13,14)],15)
=> ? = 4
[2,5,3,4,1] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(1,10),(2,8),(2,9),(2,10),(3,7),(3,9),(3,10),(4,5),(4,7),(4,8),(5,11),(7,11),(7,12),(8,11),(8,12),(9,12),(10,11),(10,12),(11,6),(12,6)],13)
=> ([(2,3),(2,12),(3,11),(4,5),(4,6),(4,7),(4,8),(4,12),(5,6),(5,8),(5,10),(5,11),(6,8),(6,9),(6,11),(7,9),(7,10),(7,11),(7,12),(8,9),(8,10),(8,12),(9,10),(9,11),(9,12),(10,11),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,1,3] => ([(0,2),(0,3),(0,4),(0,5),(1,11),(1,12),(2,9),(2,10),(3,6),(3,9),(4,7),(4,9),(4,10),(5,1),(5,6),(5,7),(5,10),(6,11),(6,12),(7,11),(7,12),(9,12),(10,11),(10,12),(11,8),(12,8)],13)
=> ([(2,3),(3,11),(4,6),(4,9),(4,10),(4,11),(5,7),(5,8),(5,10),(5,11),(5,12),(6,8),(6,9),(6,10),(6,12),(7,8),(7,9),(7,10),(7,11),(7,12),(8,9),(8,11),(8,12),(9,10),(9,12),(10,12),(11,12)],13)
=> ? = 3
[2,5,4,3,1] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[3,1,2,4,5] => ([(0,2),(0,3),(0,4),(1,7),(1,9),(2,8),(3,5),(3,8),(4,1),(4,5),(4,8),(5,7),(5,9),(7,6),(8,9),(9,6)],10)
=> ([(2,7),(3,6),(3,9),(4,5),(4,7),(4,8),(5,8),(5,9),(6,8),(6,9),(7,9),(8,9)],10)
=> ? = 2
[5,4,3,2,1] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([],5)
=> 0
[1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
[6,5,4,3,2,1] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> ([],6)
=> 0
Description
The degeneracy of a graph.
The degeneracy of a graph $G$ is the maximum of the minimum degrees of the (vertex induced) subgraphs of $G$.
The following 29 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001358The largest degree of a regular subgraph of a graph. St001592The maximal number of simple paths between any two different vertices of a graph. St001644The dimension of a graph. St001792The arboricity of a graph. St001962The proper pathwidth of a graph. St000785The number of distinct colouring schemes of a graph. St001029The size of the core of a graph. St001494The Alon-Tarsi number of a graph. St001580The acyclic chromatic number of a graph. St001883The mutual visibility number of a graph. St001746The coalition number of a graph. St001323The independence gap of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St001057The Grundy value of the game of creating an independent set in a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St001674The number of vertices of the largest induced star graph in the graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000310The minimal degree of a vertex of a graph. St000640The rank of the largest boolean interval in a poset. St000822The Hadwiger number of the graph. St001330The hat guessing number of a graph. St001642The Prague dimension of a graph. St000632The jump number of the poset. St001734The lettericity of a graph.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!