Your data matches 6 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001392
Mp00287: Ordered set partitions to compositionInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St001392: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[{1,2},{3}] => [2,1] => [[2,2],[1]]
=> [1]
=> 0
[{1,3},{2}] => [2,1] => [[2,2],[1]]
=> [1]
=> 0
[{2,3},{1}] => [2,1] => [[2,2],[1]]
=> [1]
=> 0
[{1},{2,3},{4}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{1},{2,4},{3}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{1},{3,4},{2}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{2},{1,3},{4}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{2},{1,4},{3}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{3},{1,2},{4}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{4},{1,2},{3}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{3},{1,4},{2}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{4},{1,3},{2}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{2},{3,4},{1}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{3},{2,4},{1}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{4},{2,3},{1}] => [1,2,1] => [[2,2,1],[1]]
=> [1]
=> 0
[{1,2},{3},{4}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,2},{4},{3}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,3},{2},{4}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,4},{2},{3}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,3},{4},{2}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,4},{3},{2}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{2,3},{1},{4}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{2,4},{1},{3}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{3,4},{1},{2}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{2,3},{4},{1}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{2,4},{3},{1}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{3,4},{2},{1}] => [2,1,1] => [[2,2,2],[1,1]]
=> [1,1]
=> 0
[{1,2},{3,4}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{1,3},{2,4}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{1,4},{2,3}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{2,3},{1,4}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{2,4},{1,3}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{3,4},{1,2}] => [2,2] => [[3,2],[1]]
=> [1]
=> 0
[{1,2,3},{4}] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[{1,2,4},{3}] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[{1,3,4},{2}] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[{2,3,4},{1}] => [3,1] => [[3,3],[2]]
=> [2]
=> 1
[{1},{2},{3,4},{5}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{2},{3,5},{4}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{2},{4,5},{3}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{3},{2,4},{5}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{3},{2,5},{4}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{4},{2,3},{5}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{5},{2,3},{4}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{4},{2,5},{3}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{5},{2,4},{3}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{3},{4,5},{2}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{4},{3,5},{2}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{1},{5},{3,4},{2}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
[{2},{1},{3,4},{5}] => [1,1,2,1] => [[2,2,1,1],[1]]
=> [1]
=> 0
Description
The largest nonnegative integer which is not a part and is smaller than the largest part of the partition.
Mp00287: Ordered set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 75%
Values
[{1,2},{3}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 1
[{1,3},{2}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 1
[{2,3},{1}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 1
[{1},{2,3},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{1},{2,4},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{1},{3,4},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{2},{1,3},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{2},{1,4},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{3},{1,2},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{4},{1,2},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{3},{1,4},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{4},{1,3},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{2},{3,4},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{3},{2,4},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{4},{2,3},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 0 + 1
[{1,2},{3},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,2},{4},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,3},{2},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,4},{2},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,3},{4},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,4},{3},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,3},{1},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,4},{1},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{3,4},{1},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,3},{4},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,4},{3},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{3,4},{2},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,2},{3,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,3},{2,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,4},{2,3}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,3},{1,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{2,4},{1,3}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{3,4},{1,2}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 1
[{1,2,3},{4}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[{1,2,4},{3}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[{1,3,4},{2}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[{2,3,4},{1}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 1
[{1},{2},{3,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{2},{3,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{2},{4,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{3},{2,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{3},{2,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{4},{2,3},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{5},{2,3},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{4},{2,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{5},{2,4},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{3},{4,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{4},{3,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1},{5},{3,4},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{1},{3,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{1},{3,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{1},{4,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{1},{2,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{1},{2,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{4},{1},{2,3},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{5},{1},{2,3},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{4},{1},{2,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{5},{1},{2,4},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{1},{4,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{4},{1},{3,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{5},{1},{3,4},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{3},{1,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{3},{1,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{4},{1,3},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{5},{1,3},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{4},{1,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{2},{5},{1,4},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{2},{1,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{2},{1,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{4},{2},{1,3},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{5},{2},{1,3},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{4},{2},{1,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{5},{2},{1,4},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{4},{1,2},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{3},{5},{1,2},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 0 + 1
[{1,2},{3},{4},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,2},{3},{5},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,2},{4},{3},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,2},{5},{3},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,2},{4},{5},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,2},{5},{4},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{2},{4},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{2},{5},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{2},{3},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{2},{3},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{2},{5},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{2},{4},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{4},{2},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{5},{2},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{3},{2},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{3},{2},{4}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{5},{2},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{4},{2},{3}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{4},{5},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,3},{5},{4},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{3},{5},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{3},{4},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,4},{5},{3},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{1,5},{4},{3},{2}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
[{2,3},{1},{4},{5}] => [2,1,1,1] => [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00287: Ordered set partitions to compositionInteger compositions
Mp00039: Integer compositions complementInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001330: Graphs ⟶ ℤResult quality: 48% values known / values provided: 48%distinct values known / distinct values provided: 100%
Values
[{1,2},{3}] => [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 0 + 2
[{1,3},{2}] => [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 0 + 2
[{2,3},{1}] => [2,1] => [1,2] => ([(1,2)],3)
=> 2 = 0 + 2
[{1},{2,3},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{1},{2,4},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{1},{3,4},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{2},{1,3},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{2},{1,4},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{3},{1,2},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{4},{1,2},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{3},{1,4},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{4},{1,3},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{2},{3,4},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{3},{2,4},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{4},{2,3},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> 2 = 0 + 2
[{1,2},{3},{4}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,2},{4},{3}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,3},{2},{4}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,4},{2},{3}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,3},{4},{2}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,4},{3},{2}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{2,3},{1},{4}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{2,4},{1},{3}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{3,4},{1},{2}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{2,3},{4},{1}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{2,4},{3},{1}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{3,4},{2},{1}] => [2,1,1] => [1,3] => ([(2,3)],4)
=> 2 = 0 + 2
[{1,2},{3,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,3},{2,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,4},{2,3}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,3},{1,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,4},{1,3}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{3,4},{1,2}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,2,3},{4}] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[{1,2,4},{3}] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[{1,3,4},{2}] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[{2,3,4},{1}] => [3,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 3 = 1 + 2
[{1},{2},{3,4},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{2},{3,5},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{2},{4,5},{3}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{3},{2,4},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{3},{2,5},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{4},{2,3},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{5},{2,3},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{4},{2,5},{3}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{5},{2,4},{3}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{3},{4,5},{2}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{4},{3,5},{2}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{5},{3,4},{2}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2},{1},{3,4},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2},{1},{3,5},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2},{1},{4,5},{3}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3},{1},{2,4},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3},{1},{2,5},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{4},{1},{2,3},{5}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{5},{1},{2,3},{4}] => [1,1,2,1] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1},{2,3},{4,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{2,4},{3,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{2,5},{3,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{3,4},{2,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{3,5},{2,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{4,5},{2,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{1,3},{4,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{1,4},{3,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{1,5},{3,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{1,2},{4,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{1,2},{3,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{1,2},{3,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{1,4},{2,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{1,5},{2,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{1,3},{2,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{1,3},{2,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{1,5},{2,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{1,4},{2,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{3,4},{1,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{3,5},{1,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{4,5},{1,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{2,4},{1,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{2,5},{1,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{2,3},{1,5}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{2,3},{1,4}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{2,5},{1,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{2,4},{1,3}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{3},{4,5},{1,2}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{4},{3,5},{1,2}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{5},{3,4},{1,2}] => [1,2,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{2,3,4},{5}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{1},{2,3,5},{4}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{1},{2,4,5},{3}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{1},{3,4,5},{2}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{2},{1,3,4},{5}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{2},{1,3,5},{4}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{2},{1,4,5},{3}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{3},{1,2,4},{5}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{3},{1,2,5},{4}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{4},{1,2,3},{5}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{5},{1,2,3},{4}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{4},{1,2,5},{3}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{5},{1,2,4},{3}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
[{3},{1,4,5},{2}] => [1,3,1] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 1 + 2
Description
The hat guessing number of a graph. Suppose that each vertex of a graph corresponds to a player, wearing a hat whose color is arbitrarily chosen from a set of $q$ possible colors. Each player can see the hat colors of his neighbors, but not his own hat color. All of the players are asked to guess their own hat colors simultaneously, according to a predetermined guessing strategy and the hat colors they see, where no communication between them is allowed. The hat guessing number $HG(G)$ of a graph $G$ is the largest integer $q$ such that there exists a guessing strategy guaranteeing at least one correct guess for any hat assignment of $q$ possible colors. Because it suffices that a single player guesses correctly, the hat guessing number of a graph is the maximum of the hat guessing numbers of its connected components.
Mp00287: Ordered set partitions to compositionInteger compositions
Mp00041: Integer compositions conjugateInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000454: Graphs ⟶ ℤResult quality: 15% values known / values provided: 15%distinct values known / distinct values provided: 50%
Values
[{1,2},{3}] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0 + 2
[{1,3},{2}] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0 + 2
[{2,3},{1}] => [2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ? = 0 + 2
[{1},{2,3},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{1},{2,4},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{1},{3,4},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{2},{1,3},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{2},{1,4},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{3},{1,2},{4}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{4},{1,2},{3}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{3},{1,4},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{4},{1,3},{2}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{2},{3,4},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{3},{2,4},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{4},{2,3},{1}] => [1,2,1] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,2},{3},{4}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,2},{4},{3}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,3},{2},{4}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,4},{2},{3}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,3},{4},{2}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,4},{3},{2}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,3},{1},{4}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,4},{1},{3}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{3,4},{1},{2}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,3},{4},{1}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,4},{3},{1}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{3,4},{2},{1}] => [2,1,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,2},{3,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,3},{2,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,4},{2,3}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,3},{1,4}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{2,4},{1,3}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{3,4},{1,2}] => [2,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 2
[{1,2,3},{4}] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[{1,2,4},{3}] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[{1,3,4},{2}] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[{2,3,4},{1}] => [3,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 1 + 2
[{1},{2},{3,4},{5}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{2},{3,5},{4}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{2},{4,5},{3}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{3},{2,4},{5}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{3},{2,5},{4}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{4},{2,3},{5}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{5},{2,3},{4}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{4},{2,5},{3}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{5},{2,4},{3}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{3},{4,5},{2}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{4},{3,5},{2}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1},{5},{3,4},{2}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{2},{1},{3,4},{5}] => [1,1,2,1] => [2,3] => ([(2,4),(3,4)],5)
=> ? = 0 + 2
[{1,2},{3},{4},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,2},{3},{5},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,2},{4},{3},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,2},{5},{3},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,2},{4},{5},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,2},{5},{4},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{2},{4},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{2},{5},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{2},{3},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{2},{3},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{2},{5},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{2},{4},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{4},{2},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{5},{2},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{3},{2},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{3},{2},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{5},{2},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{4},{2},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{4},{5},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,3},{5},{4},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{3},{5},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{3},{4},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,4},{5},{3},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{1,5},{4},{3},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{1},{4},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{1},{5},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,4},{1},{3},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,5},{1},{3},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,4},{1},{5},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,5},{1},{4},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,4},{1},{2},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,5},{1},{2},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{4,5},{1},{2},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,4},{1},{5},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,5},{1},{4},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{4,5},{1},{3},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{4},{1},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{5},{1},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,4},{3},{1},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,5},{3},{1},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,4},{5},{1},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,5},{4},{1},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,4},{2},{1},{5}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,5},{2},{1},{4}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{4,5},{2},{1},{3}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,4},{5},{1},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{3,5},{4},{1},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{4,5},{3},{1},{2}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{4},{5},{1}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
[{2,3},{5},{4},{1}] => [2,1,1,1] => [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 0 + 2
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00287: Ordered set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St001645: Graphs ⟶ ℤResult quality: 9% values known / values provided: 9%distinct values known / distinct values provided: 25%
Values
[{1,2},{3}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 6
[{1,3},{2}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 6
[{2,3},{1}] => [2,1] => [1,2] => ([(1,2)],3)
=> ? = 0 + 6
[{1},{2,3},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1},{2,4},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1},{3,4},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2},{1,3},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2},{1,4},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{3},{1,2},{4}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{4},{1,2},{3}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{3},{1,4},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{4},{1,3},{2}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2},{3,4},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{3},{2,4},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{4},{2,3},{1}] => [1,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,2},{3},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,2},{4},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,3},{2},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,4},{2},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,3},{4},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,4},{3},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,3},{1},{4}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,4},{1},{3}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{3,4},{1},{2}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,3},{4},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,4},{3},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{3,4},{2},{1}] => [2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,2},{3,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,3},{2,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,4},{2,3}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,3},{1,4}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,4},{1,3}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{3,4},{1,2}] => [2,2] => [2,2] => ([(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,2,3},{4}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 6
[{1,2,4},{3}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 6
[{1,3,4},{2}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 6
[{2,3,4},{1}] => [3,1] => [1,3] => ([(2,3)],4)
=> ? = 1 + 6
[{1},{2},{3,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{2},{3,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{2},{4,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{3},{2,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{3},{2,5},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{4},{2,3},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{2,3},{4}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{4},{2,5},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{2,4},{3}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{3},{4,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{4},{3,5},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{3,4},{2}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{2},{1},{3,4},{5}] => [1,1,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? = 0 + 6
[{1},{2},{3},{4,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{3},{4,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{3},{5,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{4},{3,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{4},{3,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{5},{3,4},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{6},{3,4},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{5},{3,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{6},{3,5},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{4},{5,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{5},{4,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{2},{6},{4,5},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2},{4,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2},{4,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2},{5,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2},{3,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2},{3,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2},{3,4},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2},{3,4},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2},{3,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2},{3,5},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2},{5,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2},{4,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2},{4,5},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{4},{2,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{4},{2,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{5},{2,4},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{6},{2,4},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{5},{2,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{6},{2,5},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3},{2,5},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3},{2,6},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3},{2,4},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3},{2,4},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3},{2,6},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3},{2,5},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{5},{2,3},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{6},{2,3},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{4},{2,3},{6}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{4},{2,3},{5}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{6},{2,3},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{5},{2,3},{4}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{5},{2,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{6},{2,5},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{4},{2,6},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{4},{2,5},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{6},{2,4},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{5},{2,4},{3}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{4},{5,6},{2}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{5},{4,6},{2}] => [1,1,1,2,1] => [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 6 = 0 + 6
Description
The pebbling number of a connected graph.
Matching statistic: St000422
Mp00286: Ordered set partitions to permutationPermutations
Mp00061: Permutations to increasing treeBinary trees
Mp00011: Binary trees to graphGraphs
St000422: Graphs ⟶ ℤResult quality: 4% values known / values provided: 4%distinct values known / distinct values provided: 25%
Values
[{1,2},{3}] => [1,2,3] => [.,[.,[.,.]]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 6
[{1,3},{2}] => [1,3,2] => [.,[[.,.],.]]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 6
[{2,3},{1}] => [2,3,1] => [[.,[.,.]],.]
=> ([(0,2),(1,2)],3)
=> ? = 0 + 6
[{1},{2,3},{4}] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1},{2,4},{3}] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1},{3,4},{2}] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2},{1,3},{4}] => [2,1,3,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2},{1,4},{3}] => [2,1,4,3] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3},{1,2},{4}] => [3,1,2,4] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{4},{1,2},{3}] => [4,1,2,3] => [[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3},{1,4},{2}] => [3,1,4,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{4},{1,3},{2}] => [4,1,3,2] => [[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2},{3,4},{1}] => [2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3},{2,4},{1}] => [3,2,4,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{4},{2,3},{1}] => [4,2,3,1] => [[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,2},{3},{4}] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,2},{4},{3}] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,3},{2},{4}] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,4},{2},{3}] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,3},{4},{2}] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,4},{3},{2}] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2,3},{1},{4}] => [2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2,4},{1},{3}] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3,4},{1},{2}] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2,3},{4},{1}] => [2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2,4},{3},{1}] => [2,4,3,1] => [[.,[[.,.],.]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3,4},{2},{1}] => [3,4,2,1] => [[[.,[.,.]],.],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,2},{3,4}] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,3},{2,4}] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{1,4},{2,3}] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(2,3)],4)
=> ? = 0 + 6
[{2,3},{1,4}] => [2,3,1,4] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{2,4},{1,3}] => [2,4,1,3] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{3,4},{1,2}] => [3,4,1,2] => [[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 0 + 6
[{1,2,3},{4}] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[{1,2,4},{3}] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[{1,3,4},{2}] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[{2,3,4},{1}] => [2,3,4,1] => [[.,[.,[.,.]]],.]
=> ([(0,3),(1,2),(2,3)],4)
=> ? = 1 + 6
[{1},{2},{3,4},{5}] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 6
[{1},{2},{3,5},{4}] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 6
[{1},{2},{4,5},{3}] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 6
[{1},{3},{2,4},{5}] => [1,3,2,4,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{3},{2,5},{4}] => [1,3,2,5,4] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{4},{2,3},{5}] => [1,4,2,3,5] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{2,3},{4}] => [1,5,2,3,4] => [.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{4},{2,5},{3}] => [1,4,2,5,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{2,4},{3}] => [1,5,2,4,3] => [.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{3},{4,5},{2}] => [1,3,4,5,2] => [.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 6
[{1},{4},{3,5},{2}] => [1,4,3,5,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{1},{5},{3,4},{2}] => [1,5,3,4,2] => [.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> ? = 0 + 6
[{2},{1},{3,4},{5}] => [2,1,3,4,5] => [[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? = 0 + 6
[{3},{2},{5},{4,6},{1}] => [3,2,5,4,6,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{3},{2},{6},{4,5},{1}] => [3,2,6,4,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{4},{2},{5},{3,6},{1}] => [4,2,5,3,6,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{4},{2},{6},{3,5},{1}] => [4,2,6,3,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{5},{2},{4},{3,6},{1}] => [5,2,4,3,6,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{6},{2},{4},{3,5},{1}] => [6,2,4,3,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{5},{2},{6},{3,4},{1}] => [5,2,6,3,4,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{6},{2},{5},{3,4},{1}] => [6,2,5,3,4,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{4},{3},{5},{2,6},{1}] => [4,3,5,2,6,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{4},{3},{6},{2,5},{1}] => [4,3,6,2,5,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{5},{3},{4},{2,6},{1}] => [5,3,4,2,6,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{6},{3},{4},{2,5},{1}] => [6,3,4,2,5,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{5},{3},{6},{2,4},{1}] => [5,3,6,2,4,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{6},{3},{5},{2,4},{1}] => [6,3,5,2,4,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{5},{4},{6},{2,3},{1}] => [5,4,6,2,3,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{6},{4},{5},{2,3},{1}] => [6,4,5,2,3,1] => [[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2,5},{4},{6}] => [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2,6},{4},{5}] => [1,3,2,6,4,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2,5},{3},{6}] => [1,4,2,5,3,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2,6},{3},{5}] => [1,4,2,6,3,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2,4},{3},{6}] => [1,5,2,4,3,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2,4},{3},{5}] => [1,6,2,4,3,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2,6},{3},{4}] => [1,5,2,6,3,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2,5},{3},{4}] => [1,6,2,5,3,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3,5},{2},{6}] => [1,4,3,5,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3,6},{2},{5}] => [1,4,3,6,2,5] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3,4},{2},{6}] => [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3,4},{2},{5}] => [1,6,3,4,2,5] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3,6},{2},{4}] => [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3,5},{2},{4}] => [1,6,3,5,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{4,6},{2},{3}] => [1,5,4,6,2,3] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{4,5},{2},{3}] => [1,6,4,5,2,3] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2,5},{4,6}] => [1,3,2,5,4,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{3},{2,6},{4,5}] => [1,3,2,6,4,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2,5},{3,6}] => [1,4,2,5,3,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{2,6},{3,5}] => [1,4,2,6,3,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2,4},{3,6}] => [1,5,2,4,3,6] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2,4},{3,5}] => [1,6,2,4,3,5] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{2,6},{3,4}] => [1,5,2,6,3,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{2,5},{3,4}] => [1,6,2,5,3,4] => [.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3,5},{2,6}] => [1,4,3,5,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{4},{3,6},{2,5}] => [1,4,3,6,2,5] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3,4},{2,6}] => [1,5,3,4,2,6] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3,4},{2,5}] => [1,6,3,4,2,5] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{3,6},{2,4}] => [1,5,3,6,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{3,5},{2,4}] => [1,6,3,5,2,4] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{5},{4,6},{2,3}] => [1,5,4,6,2,3] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{1},{6},{4,5},{2,3}] => [1,6,4,5,2,3] => [.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{3},{2,5},{4},{6},{1}] => [3,2,5,4,6,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
[{3},{2,6},{4},{5},{1}] => [3,2,6,4,5,1] => [[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)
=> 6 = 0 + 6
Description
The energy of a graph, if it is integral. The energy of a graph is the sum of the absolute values of its eigenvalues. This statistic is only defined for graphs with integral energy. It is known, that the energy is never an odd integer [2]. In fact, it is never the square root of an odd integer [3]. The energy of a graph is the sum of the energies of the connected components of a graph. The energy of the complete graph $K_n$ equals $2n-2$. For this reason, we do not define the energy of the empty graph.