Processing math: 100%

Your data matches 274 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001873: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 0
[1,0,1,0]
=> 0
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> 1
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> 2
[1,1,0,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> 2
[1,1,0,1,1,0,0,0]
=> 2
[1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> 3
Description
For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between eiJ and ejJ (the radical of the indecomposable projective modules). The statistic gives half of the rank of the matrix C^t-C.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
Mp00160: Permutations graph of inversionsGraphs
St000387: Graphs ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 0
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> 0
[1,1,0,0]
=> [2,1] => [2,1] => ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => ([(1,2)],3)
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => ([(2,3)],4)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [5,4,3,2,1] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,5,4,3,2,1] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
Description
The matching number of a graph. For a graph G, this is defined as the maximal size of a '''matching''' or '''independent edge set''' (a set of edges without common vertices) contained in G.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00116: Perfect matchings Kasraoui-ZengPerfect matchings
Mp00058: Perfect matchings to permutationPermutations
St001394: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [(1,2)]
=> [(1,2)]
=> [2,1] => 0
[1,0,1,0]
=> [(1,2),(3,4)]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,1,0,0]
=> [(1,4),(2,3)]
=> [(1,3),(2,4)]
=> [3,4,1,2] => 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [(1,2),(3,5),(4,6)]
=> [2,1,5,6,3,4] => 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [(1,3),(2,4),(5,6)]
=> [3,4,1,2,6,5] => 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [(1,3),(2,5),(4,6)]
=> [3,5,1,6,2,4] => 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [(1,4),(2,5),(3,6)]
=> [4,5,6,1,2,3] => 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,2),(3,4),(5,7),(6,8)]
=> [2,1,4,3,7,8,5,6] => 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,2),(3,5),(4,6),(7,8)]
=> [2,1,5,6,3,4,8,7] => 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [(1,2),(3,5),(4,7),(6,8)]
=> [2,1,5,7,3,8,4,6] => 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [(1,2),(3,6),(4,7),(5,8)]
=> [2,1,6,7,8,3,4,5] => 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [(1,3),(2,4),(5,6),(7,8)]
=> [3,4,1,2,6,5,8,7] => 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [(1,3),(2,4),(5,7),(6,8)]
=> [3,4,1,2,7,8,5,6] => 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [(1,3),(2,5),(4,6),(7,8)]
=> [3,5,1,6,2,4,8,7] => 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,3),(2,5),(4,7),(6,8)]
=> [3,5,1,7,2,8,4,6] => 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [(1,3),(2,6),(4,7),(5,8)]
=> [3,6,1,7,8,2,4,5] => 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [(1,4),(2,5),(3,6),(7,8)]
=> [4,5,6,1,2,3,8,7] => 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [(1,4),(2,5),(3,7),(6,8)]
=> [4,5,7,1,2,8,3,6] => 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [(1,4),(2,6),(3,7),(5,8)]
=> [4,6,7,1,8,2,3,5] => 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> [5,6,7,8,1,2,3,4] => 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [(1,6),(2,7),(3,8),(4,9),(5,10)]
=> [6,7,8,9,10,1,2,3,4,5] => 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)]
=> [7,8,9,10,11,12,1,2,3,4,5,6] => 3
Description
The genus of a permutation. The genus g(π) of a permutation πSn is defined via the relation n+12g(π)=z(π)+z(π1ζ), where ζ=(1,2,,n) is the long cycle and z() is the number of cycles in the permutation.
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00116: Perfect matchings Kasraoui-ZengPerfect matchings
St001444: Perfect matchings ⟶ ℤResult quality: 75% values known / values provided: 92%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [(1,2)]
=> [(1,2)]
=> 0
[1,0,1,0]
=> [(1,2),(3,4)]
=> [(1,2),(3,4)]
=> 0
[1,1,0,0]
=> [(1,4),(2,3)]
=> [(1,3),(2,4)]
=> 1
[1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [(1,2),(3,4),(5,6)]
=> 0
[1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [(1,2),(3,5),(4,6)]
=> 1
[1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [(1,3),(2,4),(5,6)]
=> 1
[1,1,0,1,0,0]
=> [(1,6),(2,3),(4,5)]
=> [(1,3),(2,5),(4,6)]
=> 1
[1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [(1,4),(2,5),(3,6)]
=> 1
[1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [(1,2),(3,4),(5,6),(7,8)]
=> 0
[1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [(1,2),(3,4),(5,7),(6,8)]
=> 1
[1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [(1,2),(3,5),(4,6),(7,8)]
=> 1
[1,0,1,1,0,1,0,0]
=> [(1,2),(3,8),(4,5),(6,7)]
=> [(1,2),(3,5),(4,7),(6,8)]
=> 1
[1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [(1,2),(3,6),(4,7),(5,8)]
=> 1
[1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [(1,3),(2,4),(5,6),(7,8)]
=> 1
[1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [(1,3),(2,4),(5,7),(6,8)]
=> 2
[1,1,0,1,0,0,1,0]
=> [(1,6),(2,3),(4,5),(7,8)]
=> [(1,3),(2,5),(4,6),(7,8)]
=> 1
[1,1,0,1,0,1,0,0]
=> [(1,8),(2,3),(4,5),(6,7)]
=> [(1,3),(2,5),(4,7),(6,8)]
=> 2
[1,1,0,1,1,0,0,0]
=> [(1,8),(2,3),(4,7),(5,6)]
=> [(1,3),(2,6),(4,7),(5,8)]
=> 2
[1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [(1,4),(2,5),(3,6),(7,8)]
=> 1
[1,1,1,0,0,1,0,0]
=> [(1,8),(2,5),(3,4),(6,7)]
=> [(1,4),(2,5),(3,7),(6,8)]
=> 2
[1,1,1,0,1,0,0,0]
=> [(1,8),(2,7),(3,4),(5,6)]
=> [(1,4),(2,6),(3,7),(5,8)]
=> 1
[1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [(1,5),(2,6),(3,7),(4,8)]
=> 2
[1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [(1,6),(2,7),(3,8),(4,9),(5,10)]
=> 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> ? = 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)]
=> ? = 3
Description
The rank of the skew-symmetric form which is non-zero on crossing arcs of a perfect matching. Two pairs (a,b) and (c,d) (with a<b and c<d) in a perfect matching cross if and only if a<c<b<d or c<a<d<b. Define a skew symmetric matrix M whose rows and columns are indexed by the pairs of the matching, with M(a,b),(c,d)={1if a<c<b<d1if c<a<d<b0otherwise The rank of this matrix is always even. The present statistic is half of the matrix' rank.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
St001597: Skew partitions ⟶ ℤResult quality: 73% values known / values provided: 73%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,1,0,0]
=> [[2],[]]
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> 3 = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ? = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4],[]]
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[7],[]]
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4],[]]
=> ? = 3 + 1
Description
The Frobenius rank of a skew partition. This is the minimal number of border strips in a border strip decomposition of the skew partition.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000632: Posets ⟶ ℤResult quality: 58% values known / values provided: 58%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 0
[1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 0
[1,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> 2
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 3
Description
The jump number of the poset. A jump in a linear extension e1,,en of a poset P is a pair (ei,ei+1) so that ei+1 does not cover ei in P. The jump number of a poset is the minimal number of jumps in linear extensions of a poset.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00232: Dyck paths parallelogram posetPosets
St000307: Posets ⟶ ℤResult quality: 50% values known / values provided: 54%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> ([(0,3),(0,4),(1,6),(2,5),(3,7),(4,2),(4,7),(5,6),(7,1),(7,5)],8)
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 3 + 1
Description
The number of rowmotion orbits of a poset. Rowmotion is an operation on order ideals in a poset P. It sends an order ideal I to the order ideal generated by the minimal antichain of PI.
Matching statistic: St000665
Mp00099: Dyck paths bounce pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St000665: Permutations ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,0]
=> [(1,2)]
=> [2,1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> [7,8,9,10,11,12,6,5,4,3,2,1] => ? = 3
Description
The number of rafts of a permutation. Let π be a permutation of length n. A small ascent of π is an index i such that π(i+1)=π(i)+1, see [[St000441]], and a raft of π is a non-empty maximal sequence of consecutive small ascents.
Matching statistic: St001115
Mp00099: Dyck paths bounce pathDyck paths
Mp00146: Dyck paths to tunnel matchingPerfect matchings
Mp00283: Perfect matchings non-nesting-exceedence permutationPermutations
St001115: Permutations ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 75%
Values
[1,0]
=> [1,0]
=> [(1,2)]
=> [2,1] => 0
[1,0,1,0]
=> [1,0,1,0]
=> [(1,2),(3,4)]
=> [2,1,4,3] => 0
[1,1,0,0]
=> [1,1,0,0]
=> [(1,4),(2,3)]
=> [3,4,2,1] => 1
[1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6)]
=> [2,1,4,3,6,5] => 0
[1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 1
[1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [(1,4),(2,3),(5,6)]
=> [3,4,2,1,6,5] => 1
[1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [(1,2),(3,6),(4,5)]
=> [2,1,5,6,4,3] => 1
[1,1,1,0,0,0]
=> [1,1,1,0,0,0]
=> [(1,6),(2,5),(3,4)]
=> [4,5,6,3,2,1] => 1
[1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8)]
=> [2,1,4,3,6,5,8,7] => 0
[1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 1
[1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 1
[1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [(1,2),(3,4),(5,8),(6,7)]
=> [2,1,4,3,7,8,6,5] => ? = 1
[1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 1
[1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [(1,4),(2,3),(5,6),(7,8)]
=> [3,4,2,1,6,5,8,7] => ? = 1
[1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [(1,2),(3,6),(4,5),(7,8)]
=> [2,1,5,6,4,3,8,7] => ? = 1
[1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,0,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 2
[1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [(1,6),(2,5),(3,4),(7,8)]
=> [4,5,6,3,2,1,8,7] => ? = 1
[1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [(1,4),(2,3),(5,8),(6,7)]
=> [3,4,2,1,7,8,6,5] => 2
[1,1,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [(1,2),(3,8),(4,7),(5,6)]
=> [2,1,6,7,8,5,4,3] => ? = 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [(1,8),(2,7),(3,6),(4,5)]
=> [5,6,7,8,4,3,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [2,1,4,3,6,5,8,7,10,9] => 0
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [(1,10),(2,9),(3,8),(4,7),(5,6)]
=> [6,7,8,9,10,5,4,3,2,1] => ? = 2
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)]
=> [2,1,4,3,6,5,8,7,10,9,12,11] => 0
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)]
=> [7,8,9,10,11,12,6,5,4,3,2,1] => ? = 3
Description
The number of even descents of a permutation.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00185: Skew partitions cell posetPosets
St000298: Posets ⟶ ℤResult quality: 50% values known / values provided: 54%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1,1,0,0]
=> [[2],[]]
=> ([(0,1)],2)
=> 1 = 0 + 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> ([(0,3),(1,2),(1,4),(2,5),(3,4),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6)
=> 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> ([(0,2),(0,3),(1,5),(2,6),(3,5),(3,6),(5,4),(6,4)],7)
=> ? = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> ([(0,6),(1,3),(1,6),(2,4),(3,2),(3,5),(5,4),(6,5)],7)
=> ? = 1 + 1
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(4,3),(4,5)],6)
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(6,4),(6,5)],7)
=> ? = 2 + 1
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> ([(0,3),(0,4),(2,6),(3,1),(3,5),(4,2),(4,5),(5,6)],7)
=> ? = 1 + 1
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 2 + 1
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7)],8)
=> ? = 2 + 1
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [[4,3],[]]
=> ([(0,2),(0,4),(2,5),(3,1),(3,6),(4,3),(4,5),(5,6)],7)
=> ? = 1 + 1
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3],[1]]
=> ([(0,3),(0,7),(1,2),(1,7),(2,5),(3,6),(5,4),(6,4),(7,5),(7,6)],8)
=> ? = 2 + 1
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [[4,4],[]]
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3],[]]
=> ([(0,3),(0,4),(1,7),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6),(5,7),(6,8),(7,8)],9)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [[6],[]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> 1 = 0 + 1
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4],[]]
=> ([(0,4),(0,5),(1,9),(2,3),(2,11),(3,8),(4,1),(4,10),(5,2),(5,10),(7,6),(8,6),(9,7),(10,9),(10,11),(11,7),(11,8)],12)
=> ? = 2 + 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [[7],[]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> 1 = 0 + 1
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4],[]]
=> ([(0,5),(0,6),(1,4),(1,15),(2,3),(2,14),(3,8),(4,9),(5,2),(5,13),(6,1),(6,13),(8,10),(9,11),(10,7),(11,7),(12,10),(12,11),(13,14),(13,15),(14,8),(14,12),(15,9),(15,12)],16)
=> ? = 3 + 1
Description
The order dimension or Dushnik-Miller dimension of a poset. This is the minimal number of linear orderings whose intersection is the given poset.
The following 264 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000647The number of big descents of a permutation. St000396The register function (or Horton-Strahler number) of a binary tree. St000640The rank of the largest boolean interval in a poset. St001235The global dimension of the corresponding Comp-Nakayama algebra. St000454The largest eigenvalue of a graph if it is integral. St000534The number of 2-rises of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000920The logarithmic height of a Dyck path. St000243The number of cyclic valleys and cyclic peaks of a permutation. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000891The number of distinct diagonal sums of a permutation matrix. St000486The number of cycles of length at least 3 of a permutation. St001174The Gorenstein dimension of the algebra A/I when I is the tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001359The number of permutations in the equivalence class of a permutation obtained by taking inverses of cycles. St000091The descent variation of a composition. St000118The number of occurrences of the contiguous pattern [.,[.,[.,.]]] in a binary tree. St000162The number of nontrivial cycles in the cycle decomposition of a permutation. St000317The cycle descent number of a permutation. St000456The monochromatic index of a connected graph. St000538The number of even inversions of a permutation. St000563The number of overlapping pairs of blocks of a set partition. St000585The number of occurrences of the pattern {{1,3},{2}} such that 2 is maximal, (1,3) are consecutive in a block. St000649The number of 3-excedences of a permutation. St000660The number of rises of length at least 3 of a Dyck path. St000688The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path. St000710The number of big deficiencies of a permutation. St000711The number of big exceedences of a permutation. St000732The number of double deficiencies of a permutation. St000779The tier of a permutation. St000836The number of descents of distance 2 of a permutation. St000872The number of very big descents of a permutation. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001026The maximum of the projective dimensions of the indecomposable non-projective injective modules minus the minimum in the Nakayama algebra corresponding to the Dyck path. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001423The number of distinct cubes in a binary word. St001469The holeyness of a permutation. St001470The cyclic holeyness of a permutation. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001728The number of invisible descents of a permutation. St001737The number of descents of type 2 in a permutation. St001839The number of excedances of a set partition. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001862The number of crossings of a signed permutation. St001960The number of descents of a permutation minus one if its first entry is not one. St000574The number of occurrences of the pattern {{1},{2}} such that 1 is a minimal and 2 a maximal element. St000619The number of cyclic descents of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000886The number of permutations with the same antidiagonal sums. St001111The weak 2-dynamic chromatic number of a graph. St001569The maximal modular displacement of a permutation. St001734The lettericity of a graph. St001735The number of permutations with the same set of runs. St001741The largest integer such that all patterns of this size are contained in the permutation. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001863The number of weak excedances of a signed permutation. St001864The number of excedances of a signed permutation. St001896The number of right descents of a signed permutations. St001946The number of descents in a parking function. St001093The detour number of a graph. St001566The length of the longest arithmetic progression in a permutation. St001638The book thickness of a graph. St000455The second largest eigenvalue of a graph if it is integral. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001644The dimension of a graph. St000264The girth of a graph, which is not a tree. St001330The hat guessing number of a graph. St000929The constant term of the character polynomial of an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000882The number of connected components of short braid edges in the graph of braid moves of a permutation. St001568The smallest positive integer that does not appear twice in the partition. St000893The number of distinct diagonal sums of an alternating sign matrix. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St000068The number of minimal elements in a poset. St000071The number of maximal chains in a poset. St000100The number of linear extensions of a poset. St000259The diameter of a connected graph. St000527The width of the poset. St000909The number of maximal chains of maximal size in a poset. St000112The sum of the entries reduced by the index of their row in a semistandard tableau. St000177The number of free tiles in the pattern. St000178Number of free entries. St001520The number of strict 3-descents. St001948The number of augmented double ascents of a permutation. St000736The last entry in the first row of a semistandard tableau. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000075The orbit size of a standard tableau under promotion. St000260The radius of a connected graph. St000284The Plancherel distribution on integer partitions. St000365The number of double ascents of a permutation. St000474Dyson's crank of a partition. St000488The number of cycles of a permutation of length at most 2. St000489The number of cycles of a permutation of length at most 3. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000954Number of times the corresponding LNakayama algebra has Exti(D(A),A)=0 for i>0. St001087The number of occurrences of the vincular pattern |12-3 in a permutation. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001128The exponens consonantiae of a partition. St001130The number of two successive successions in a permutation. St001153The number of blocks with even minimum in a set partition. St001163The number of simple modules with dominant dimension at least three in the corresponding Nakayama algebra. St001171The vector space dimension of Ext1A(Io,A) when Io is the tilting module corresponding to the permutation o in the Auslander algebra A of K[x]/(xn). St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001193The dimension of Ext1A(A/AeA,A) in the corresponding Nakayama algebra A such that eA is a minimal faithful projective-injective module. St001207The Lowey length of the algebra A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra of K[x]/(xn). St001219Number of simple modules S in the corresponding Nakayama algebra such that the Auslander-Reiten sequence ending at S has the property that all modules in the exact sequence are reflexive. St001233The number of indecomposable 2-dimensional modules with projective dimension one. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001266The largest vector space dimension of an indecomposable non-projective module that is reflexive in the corresponding Nakayama algebra. St001280The number of parts of an integer partition that are at least two. St001432The order dimension of the partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001525The number of symmetric hooks on the diagonal of a partition. St001556The number of inversions of the third entry of a permutation. St001557The number of inversions of the second entry of a permutation. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St001684The reduced word complexity of a permutation. St001811The Castelnuovo-Mumford regularity of a permutation. St001856The number of edges in the reduced word graph of a permutation. St001857The number of edges in the reduced word graph of a signed permutation. St001866The nesting alignments of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001906Half of the difference between the total displacement and the number of inversions and the reflection length of a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St000079The number of alternating sign matrices for a given Dyck path. St000174The flush statistic of a semistandard tableau. St000315The number of isolated vertices of a graph. St000366The number of double descents of a permutation. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000514The number of invariant simple graphs when acting with a permutation of given cycle type. St000515The number of invariant set partitions when acting with a permutation of given cycle type. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000781The number of proper colouring schemes of a Ferrers diagram. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000958The number of Bruhat factorizations of a permutation. St001000Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001008Number of indecomposable injective modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path. St001060The distinguishing index of a graph. St001114The number of odd descents of a permutation. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001151The number of blocks with odd minimum. St001164Number of indecomposable injective modules whose socle has projective dimension at most g-1 (g the global dimension) minus the number of indecomposable projective-injective modules. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001208The number of connected components of the quiver of A/T when T is the 1-tilting module corresponding to the permutation in the Auslander algebra A of K[x]/(xn). St001210Gives the maximal vector space dimension of the first Ext-group between an indecomposable module X and the regular module A, when A is the Nakayama algebra corresponding to the Dyck path. St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless. St001236The dominant dimension of the corresponding Comp-Nakayama algebra. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001264The smallest index i such that the i-th simple module has projective dimension equal to the global dimension of the corresponding Nakayama algebra. St001294The maximal torsionfree index of a simple non-projective module in the corresponding Nakayama algebra. St001296The maximal torsionfree index of an indecomposable non-projective module in the corresponding Nakayama algebra. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001413Half the length of the longest even length palindromic prefix of a binary word. St001487The number of inner corners of a skew partition. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001587Half of the largest even part of an integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001661Half the permanent of the Identity matrix plus the permutation matrix associated to the permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001823The Stasinski-Voll length of a signed permutation. St001840The number of descents of a set partition. St001860The number of factors of the Stanley symmetric function associated with a signed permutation. St001904The length of the initial strictly increasing segment of a parking function. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001935The number of ascents in a parking function. St001937The size of the center of a parking function. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St000089The absolute variation of a composition. St000090The variation of a composition. St000137The Grundy value of an integer partition. St000166The depth minus 1 of an ordered tree. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000225Difference between largest and smallest parts in a partition. St000254The nesting number of a set partition. St000287The number of connected components of a graph. St000308The height of the tree associated to a permutation. St000335The difference of lower and upper interactions. St000352The Elizalde-Pak rank of a permutation. St000422The energy of a graph, if it is integral. St000492The rob statistic of a set partition. St000498The lcs statistic of a set partition. St000522The number of 1-protected nodes of a rooted tree. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000597The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, (2,3) are consecutive in a block. St000654The first descent of a permutation. St000739The first entry in the last row of a semistandard tableau. St000864The number of circled entries of the shifted recording tableau of a permutation. St000887The maximal number of nonzero entries on a diagonal of a permutation matrix. St000930The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver. St000944The 3-degree of an integer partition. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001383The BG-rank of an integer partition. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001530The depth of a Dyck path. St001570The minimal number of edges to add to make a graph Hamiltonian. St001586The number of odd parts smaller than the largest even part in an integer partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001623The number of doubly irreducible elements of a lattice. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001761The maximal multiplicity of a letter in a reduced word of a permutation. St001773The number of minimal elements in Bruhat order not less than the signed permutation. St001778The largest greatest common divisor of an element and its image in a permutation. St001875The number of simple modules with projective dimension at most 1. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001926Sparre Andersen's position of the maximum of a signed permutation. St001928The number of non-overlapping descents in a permutation. St000007The number of saliances of the permutation. St000054The first entry of the permutation. St000094The depth of an ordered tree. St000383The last part of an integer composition. St000478Another weight of a partition according to Alladi. St000519The largest length of a factor maximising the subword complexity. St000521The number of distinct subtrees of an ordered tree. St000542The number of left-to-right-minima of a permutation. St000839The largest opener of a set partition. St000922The minimal number such that all substrings of this length are unique. St000923The minimal number with no two order isomorphic substrings of this length in a permutation. St000928The sum of the coefficients of the character polynomial of an integer partition. St000973The length of the boundary of an ordered tree. St000975The length of the boundary minus the length of the trunk of an ordered tree. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001415The length of the longest palindromic prefix of a binary word. St001416The length of a longest palindromic factor of a binary word. St001419The length of the longest palindromic factor beginning with a one of a binary word. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St000230Sum of the minimal elements of the blocks of a set partition. St001515The vector space dimension of the socle of the first syzygy module of the regular module (as a bimodule). St001645The pebbling number of a connected graph.